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 49 

Plant tissues annually sequester nearly half of the 120 Pg of carbon assimilated by 50 

photosynthesis1, and thus contribute to uptake 15% of anthropogenic CO2 emissions2. 51 

Most of the carbon is sequestered in the wood, that acts as a long-term storage pool of 52 

carbon and represents about 80% of the terrestrial living biomass3. Biomass 53 

accumulation in northern hemisphere woody plants sensitively follows the seasonal 54 

cycles, with modifications that can strongly impact the global carbon cycle1,4. However, 55 

the seasonal dynamics of woody biomass accumulation remains poorly quantified, 56 

limiting our understanding of the terrestrial carbon cycle and its sensitivity to on-going 57 

climate change. Here we show a one month delay between radial size increase and 58 

carbon sequestration in trees during the season, based upon three years of weekly 59 

observations of stem size and carbon storage in a mature temperate forest. We expect 60 

the predicted changes in the annual cycle of temperature5 to shift the phasing of stem 61 

size increase and carbon sequestration, as stem size increase closely matches 62 

photoperiod cycle, whereas woody carbon sequestration follows the seasonal course of 63 

temperature. Comparison of these detailed quantifications with a global dataset of wood 64 

formation phenology reveals that such a lag is a common feature in temperate, boreal, 65 

alpine, and Mediterranean forest biomes of the northern hemisphere. These results 66 

question widely applied definitions of growth and demonstrate that the seasonal 67 

dynamics of woody biomass accumulation cannot be inferred from stem size 68 

measurements6-8. Our study also provides new insights into the processes driving the 69 

annual cycle of CO29 and long-term terrestrial carbon storage3, with important 70 

implications on future climate-carbon interactions. 71 

< The importance of wood formation in shaping the seasonal carbon cycle > 72 

The atmospheric CO2 concentration undergoes a seasonal cycle in the northern 73 

hemisphere with a 6 to 19 ppm amplitude9, thereby representing intra-annual net fluxes 74 
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greater than the total annual anthropogenic emissions. This seasonal cycle in CO2 75 

concentration is predominantly driven by the annual rhythm of terrestrial plant activity, 76 

including the delicate balance between carbon uptake by photosynthesis, release by 77 

respiration, and sequestration through plant tissue formation. Wood formation in particular is 78 

the primary biological process through which carbon is sequestered on multi-annual to even 79 

millennial time-scales in plants. In total, the sequestration in forest ecosystems is nowadays a 80 

bit higher than the emissions, which contributes to a carbon sink that mitigates climate 81 

change2,10. However, large uncertainties remain in the response of the global carbon cycle to 82 

on-going climate change11. For example, enhanced seasonal amplitudes in the CO2 83 

concentration of the northern hemisphere observed over the last decades are suggesting large 84 

ecological changes in northern forests and a major shift in the global carbon cycle9. In-situ 85 

observations are thus required to identify and attribute the individual biological processes 86 

controlling carbon cycling in terrestrial ecosystems and consequently the global carbon 87 

budget 88 

<How carbon fluxes in forests are measured> 89 

Since the late 1990s, the “eddy covariance” technique has emerged as the primary 90 

method to evaluate net carbon fluxes between forest ecosystems and the atmosphere12. This 91 

method produces a direct measure of the CO2 exchanges across the interface between the 92 

atmosphere and plant canopy from sub-hourly to yearly time scales. Furthermore, carbon 93 

allocation among the different ecosystem components can be estimated from repeated stand 94 

inventories6, measurements of tree size changes7 or litter fall13, phenocams14 or remote 95 

sensing15. Yet, discrepancies between the seasonality of carbon fluxes and tree size 96 

measurements16 are indicative of the large uncertainties of terrestrial carbon dynamics11. This 97 

is not surprising, as neither the eddy covariance technique nor the indirect methods allow 98 

quantification of when carbon is locked in the wood or a mechanistic understanding of the 99 
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physiological processes responsible for the terrestrial carbon sink and long-term storage in 100 

woody tissues. A more detailed, process-oriented knowledge of woody carbon sequestration is 101 

therefore a timely and necessary endeavour to improve our understanding of terrestrial carbon 102 

cycle and its interaction with the climate. 103 

<Define the aim of the study > 104 

In this study, we unravel the seasonal dynamics and climatic sensitivity of stem size 105 

increase and woody carbon sequestration in trees. We achieve this by performing observations 106 

of wood formation dynamics and stem size changes at weekly resolution in three main 107 

European conifer species (silver fir, Norway spruce and Scots pine). Our detailed 108 

measurements of the forming and mature wood in concert with robust computation of cellular 109 

developmental kinetics allow us, for the first time, to quantify the magnitude and dynamics of 110 

seasonal carbon sequestration into stem wood with high temporal precision (Extended Data 111 

Fig. 1). 112 

<Description of seasonal dynamics of processes> 113 

Wood formation (comprehensive of the processes of cambial activity, xylem size 114 

increase and woody carbon sequestration) was active during almost 7 months, from mid-April 115 

to the beginning of November (Fig. 1). We found that cambial activity and xylem size 116 

increase had maximum activity at the end of May, with a secondary summer maximum for 117 

xylem cell production in the cambium (Fig. 1b). The dynamics of xylem size increase well-118 

matched seasonal stem radius changes (Fig. 1a,c; Extended Data Fig. 2). This pattern was 119 

mainly shaped by the enlargement of the newly produced cells (80% of the total signal) and 120 

only marginally affected by the cell production activity of cambial tissue (Fig. 1c). 121 

Consequently, the rate of xylem size increase culminated in spring, at the time of maximal 122 

enlarging cells number (Fig. 1c) itself associated with the development of the large earlywood 123 

cells. In contrast, the seasonal rate of carbon sequestration in stem wood followed a 124 
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symmetric bell-shaped curve culminating in the first half of July (Fig. 1d). We estimated the 125 

formation of the primary walls (for cambial cell division and cell enlargement) accounts for 126 

only 20% of the total woody carbon sequestration, while the remaining 80% is driven by 127 

secondary wall formation and lignification (Fig. 1d). Surprisingly, the rate of woody carbon 128 

sequestration was maximal before the formation of the characteristic small and thick-walled 129 

latewood cells had even begun. This shows that, contrary to a long-lasting common 130 

wisdom17,18, latewood formation does not coincide with maximum rates of carbon 131 

sequestration in wood. 132 

<Exploration of the lag between xylem radial growth and woody carbon sequestration> 133 

The quantification of the seasonal dynamics of xylem size increase and carbon 134 

sequestration was used to further explore the temporal divergence between these two 135 

processes. We observed a shift of 1.5 months between their respective maximal rates (Fig. 136 

1c,d) and, at mid-September, when the xylem size increase had stopped, the carbon 137 

sequestration was still at almost 50% of its maximal rate. The time-lag was also striking when 138 

expressing both processes in terms of cumulated budget (Fig. 2a). To reach the same relative 139 

advancement, the carbon sequestration needed on average 26 days more than the xylem size 140 

increase. In that sense, 90% of the annual xylem size increase was completed by early August, 141 

but only 70% of the total carbon was permanently fixed into wood structures. 142 

This temporal divergence is the result of xylogenesis, which chronologically separates 143 

size increase and carbon sequestration at the cellular level: a newly produced cell first 144 

enlarges and requires little carbon to extend its thin primary wall, and only when it reaches its 145 

final size, most of the carbon is fixed into the building and stabilisation of its thick secondary 146 

wall. Moreover, the kinetics of cell enlargement and cell-wall thickening follow divergent 147 

seasonal patterns, making cell size and cell-wall biomass content evolve differently19.  148 
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The detailed quantification of carbon sequestration dynamics exposed in this paper 149 

was achieved by microscopic observations of xylem cell development and computation of 150 

associated kinetics (Extended Data Fig. 1). We see similar patterns in three common 151 

coniferous species from nearby sites in temperate Europe, raising the question if our findings 152 

universally apply to extra-tropical forests, including broadleaved species. Unfortunately, it is 153 

impossible to directly answer this question owing to an absence of equivalent data from other 154 

sites, but a preliminary larger scale assessment can be made from a global analysis of 155 

phenological data. Indeed, a rough estimation of the mean lag can be obtained from the 156 

differences observed between the beginning and the cessation of the periods of cellular 157 

enlargement and wall thickening during the year (Figure 2b,c). From a global dataset of wood 158 

formation phenology (53 sites covering the northern hemisphere; Extended data table 1), we 159 

thus demonstrated that the lag between radial size increase and woody carbon accumulation is 160 

a common feature of northern hemisphere forest biomes: we estimated a lag slightly inferior 161 

to a month for alpine, boreal and temperate forests, and a lag about two times longer for 162 

Mediterranean forests (Figure 3). 163 

Our results question widespread conception and use of the term “growth” in biomass 164 

studies. Classically, the term “growth” is used to define indifferently an irreversible increase 165 

in organism size or mass due to metabolic processes. However, as plants cannot be weighed 166 

easily, their mass gain is usually assessed by size measurement, according to the tight 167 

relationships between body size and mass that exist for a wide range of organisms. Actually in 168 

trees, allometric equations are thus widely applied to compute biomass or carbon content from 169 

size measurements20,21, and size increase and biomass gain are well related in space22 or at 170 

inter-annual time-scales6,22. This conception has further fuelled the assumption that tree size 171 

increase and biomass gain (which is also carbon sequestration) are synchronised during the 172 

season6-8. Importantly, our demonstration of a temporal dissociation between stem volume 173 
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increase and carbon sequestration invalidates this assumption. This means that at intra-174 

seasonal scale the carbon fixation to stem wood cannot be inferred from stem radial size 175 

measurements. And above all, this provides rationale to clarify the misunderstood 176 

discrepancies observed between Eddy-covariance and tree size data, like the poor 177 

relationships between net ecosystem productivity and tree size changes at short time scales23 178 

or the positive forest carbon uptake when radial sire increase is over in autumn16. 179 

Our work helps to better understanding the seasonal terrestrial carbon balance, 180 

providing clues and methods to link forest atmosphere exchanges to sequestration in woody 181 

organs on a seasonal time-step. Modelling the timing of processes that drives carbon fluxes in 182 

the different ecosystem components is a key issue, especially for assessing how climate 183 

change impacts these processes24. Therefore, our detailed mechanistic representation of when 184 

and how carbon is seasonally locked in the wood provide crucial information on a major flux 185 

component, which is important for further developing the process-oriented biosphere models 186 

needed to constrain modern carbon budgets and predict future carbon–climate interactions24.  187 

<Relationships with environmental factors> 188 

To explore for a possible different climatic sensitivity between xylem size increase and 189 

carbon sequestration processes, we related their seasonal dynamics to seasonal environmental 190 

conditions. We observed that the seasonal course of xylem size increase was best 191 

synchronised with the light conditions, in particular with the photoperiod and to a slightly 192 

lesser extent with the cumulative daily radiation (Fig. 4a). By contrast, the woody carbon 193 

sequestration was highly synchronised with the seasonal course of temperature (Fig. 4b). 194 

When looking more in details to the shape of the relationships during the season, it appears 195 

that the rate of xylem size increase evolved quite linearly with photoperiod (Fig. 4c), while 196 

carbon sequestration changed linearly with temperature (Fig. 4d). 197 



11 
 

These results provide new insights into the evolutionary adaptation of plants to their 198 

environment. On one hand, the coordination between tree-ring size increase and photoperiod 199 

can be interpreted as a way to safely respect the timing of the growing season. Indeed, 200 

photoperiod attests a stable indicator of the time of the year that controls many developmental 201 

responses in plants25, including xylem production26. On the other hand, the synchronisation of 202 

carbon sequestration with temperature could be rather linked to the strong metabolic 203 

constraints that limit this process, which is particularly sensitive to temperature27. Finally, as 204 

climatic changes involve shift in the phase of the annual cycle of temperature (in addition to 205 

the global increase in mean annual temperature)5, the phasing of stem volume increase and 206 

carbon sequestration might change, with possible consequences on tree-ring structure, carbon 207 

fluxes and carbon-climate interactions in woody ecosystems. 208 

 209 

Methods Summary 210 

To assess the seasonal dynamics of wood formation, small wood samples (microcores) were 211 

collected weekly during 3 years (2007–2009) on the stem of 45 mature trees belonging to 212 

three conifer species (silver fir, Norway spruce and Scots pine) and grown in three sites in 213 

northeast France. Microcores were prepared in the laboratory, after what anatomical sections 214 

were cut, stained, and analysed using an optical microscope to track wood formation process. 215 

On the anatomical sections, we counted the cells in the different zones of differentiation along 216 

the forming tree ring: cambial cells, enlarging cells, wall thickening and lignifying cells, and 217 

mature cells. Generalised additive models were then applied on the cell count data to 218 

characterise wood formation dynamics and to calculate the rates of cambial activity, xylem 219 

size increase and wall material deposition in the tree ring. This latter was up-scaled at the tree 220 

level from tree dimensions, and then was converted into a rate of carbon sequestration based 221 

on an apparent density of the wall of 1.100 g cm-3, and on a wood carbon content of 50% of 222 
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dry weight. The dynamics of stem radial variations was assessed from external measurement 223 

of stem size variations using band dendrometers. We used a global xylogenesis phenology 224 

dataset to estimate the timings of xylem size increase and woody carbon sequestration in other 225 

forest biomes of northern hemisphere. To characterise the environmental conditions of the 226 

studied area, daily meteorological data (temperature, precipitation, cumulative global 227 

radiation, wind speed, and air relative humidity) of the period 2007–2009 were gathered from 228 

three stations, and the soil water balance was modelled. To assess the synchronisation 229 

between xylem size increase, carbon sequestration and environmental factors during the 230 

season, cross-correlations were performed between the different time series. Relationships 231 

between series were further assessed by linear regression. 232 

 233 
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 320 

Figures 321 

 322 

Figure 1: Seasonal dynamics of tree radial size increase and woody carbon sequestration 323 

processes. a, Stem radial variations. b, Rate of cambial activity. Superimposed (right axis) is 324 

the number of cambial cells that produce new xylem cells. c, Rate of xylem size increase, with 325 

isolated contributions of cambial cell division and cell enlargement. Superimposed (right axis) 326 

is the number of enlarging cells.. d, Rate of carbon sequestration in the stem wood, which 327 

adds the carbon sequestered by wall thickening plus the carbon sequestered by cell 328 

enlargement and cell division. Superimposed (right axis) is the number of wall thickening 329 

cells. Verical blue and red dashed lines materialise occurrence of maximal rates of  radial size 330 

increase and carbon sequestration, respectively. Graphics represent the means for 45 trees of 331 
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three species monitored over three years in three sites.332 
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 333 

 334 

Figure 2: Asynchrony of tree radial size increase and woody carbon sequestration, and 335 

xylem phenology. a, Time-lag between the seasonal dynamics of xylem size increase and 336 

woody carbon sequestration when expressing both processes in terms of cumulated budget. b, 337 

Estimate of the mean time-lag from xylem phenology. c, Comparison of the mean time-lag 338 

calculated from the quantifications of processes dynamics with this estimated from xylem 339 

phenology. In a and b, graphics represent the means (with associated standard deviations in b) 340 

for 45 trees of three species monitored over three years in three sites. In c, boxplots represent 341 

9 values of mean time-lag (1 value per site and year).342 
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 344 

 345 

Figure 3: Time-lag between tree radial size increase and woody carbon sequestration 346 

estimated from observations of xylem phenology in different forest biomes of the 347 

northern hemisphere.348 
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 349 

 350 

Figure 4: Relationships between the seasonal dynamics of xylem size increase, woody 351 

carbon sequestration and environmental factors. a, b, Cross-correlations between the 352 

seasonal course of environmental factors and: xylem size increase (a), woody carbon 353 

sequestration (b). c, d, Relationships between the seasonal dynamics of: xylem size increase 354 

and day length (c), carbon sequestration and temperature (d). For a and b, the different curves 355 

represent the mean correlation coefficients for the three species, the three years, and the three 356 

sites. Shaded area around lines represents the 95% confident interval. For c and d, each points 357 

represents the mean value of the process rate within a class of the environmental factor, and 358 

vertical bars represent the 95% confident interval (Methods). 359 


