11,713 research outputs found

    Effect of nose bluntness and afterbody shape on aerodynamic characteristics of a monoplanar missile concept with bodies of circular and elliptical cross sections at a Mach number of 2.50

    Get PDF
    The tests were performed at a Mach number of 2.50 and at angles of attack from about -4 deg to 32 deg. The results indicate that increasing nose bluntness increases zero lift drag and decreases both the maximum lift-drag ratio and the level of directional stability. The center of pressure generally moves forward with increasing nose size; however, small nose radii on the modified elliptical configurations move the center of pressure rearward. The circular bodied configurations exhibit the greatest longitudinal stability and the least directional stability. Concepts with the variable geometry afterbody contour display the most directional stability and the greatest zero lift drag

    Stability and control characteristics at Mach numbers from 0.20 to 4.63 of a cruciform air-to-air missile with triangular canard controls and a trapezoidal wing

    Get PDF
    Investigations have been conducted in the Langley 8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel at Mach numbers from 0.20 to 4.63 to determine the stability and control characteristics of a cruciform air-to-air missile with triangular canard controls and a trapezoidal wing. The results indicate that canards are effective in producing pitching moment throughout most of the test angle-of-attack and Mach number range and that the variations of pitching moment with lift for trim conditions are relatively linear. There is a decrease in canard effectiveness with an increase in angle of attack up to about Mach 2.50 as evidenced by the beginning of coalescence of the pitching-moment curves. At a Mach number above 2.50, there is an increase in effectiveness at moderate to high angles of attack. Simulated launch straps have little effect on the lift and pitch characteristics but do cause an increase in drag, and this increase in drag induces a rolling moment at a zero roll attitude where the straps cause an asymmetric geometric shape. The canards are not suitable devices for roll control and, at some Mach numbers and roll attitudes, are not effective in producing pure yawing moments

    Exploring the Course of Atypical Bridges along the Spine

    Get PDF

    Alien Registration- Fournier, Louis E. (Waterville, Kennebec County)

    Get PDF
    https://digitalmaine.com/alien_docs/15265/thumbnail.jp

    Geothermal studies - Yellowstone National Park /test site 11/, Wyoming

    Get PDF
    Summary report of diamond drilling in thermal areas of Yellowstone National Park, and method for determining heat flow in thermal area

    Localization Effect in a 2D Superconducting Network without Disorder

    Full text link
    The superconducting properties of a two-dimensional superconducting wire network with a new geometry have been measured as a function of the external magnetic field. The extreme localization effect recently predicted for this periodic lattice is revealed as a suppression of the critical current when the applied magnetic field corresponds to half a flux quantum per unit cell. For this particular magnetic field, the observed vortex state configuration is highly disordered.Comment: 6 pages, 2 eps figures, submitted to Physica C. Title change

    The Generation of Magnetic Fields Through Driven Turbulence

    Full text link
    We have tested the ability of driven turbulence to generate magnetic field structure from a weak uniform field using three dimensional numerical simulations of incompressible turbulence. We used a pseudo-spectral code with a numerical resolution of up to 1443144^3 collocation points. We find that the magnetic fields are amplified through field line stretching at a rate proportional to the difference between the velocity and the magnetic field strength times a constant. Equipartition between the kinetic and magnetic energy densities occurs at a scale somewhat smaller than the kinetic energy peak. Above the equipartition scale the velocity structure is, as expected, nearly isotropic. The magnetic field structure at these scales is uncertain, but the field correlation function is very weak. At the equipartition scale the magnetic fields show only a moderate degree of anisotropy, so that the typical radius of curvature of field lines is comparable to the typical perpendicular scale for field reversal. In other words, there are few field reversals within eddies at the equipartition scale, and no fine-grained series of reversals at smaller scales. At scales below the equipartition scale, both velocity and magnetic structures are anisotropic; the eddies are stretched along the local magnetic field lines, and the magnetic energy dominates the kinetic energy on the same scale by a factor which increases at higher wavenumbers. We do not show a scale-free inertial range, but the power spectra are a function of resolution and/or the imposed viscosity and resistivity. Our results are consistent with the emergence of a scale-free inertial range at higher Reynolds numbers.Comment: 14 pages (8 NEW figures), ApJ, in press (July 20, 2000?
    • …
    corecore