92 research outputs found

    Femtosecond Coherence and Quantum Control of Single Molecules at Room Temperature

    Full text link
    Quantum mechanical phenomena, such as electronic coherence and entanglement, play a key role in achieving the unrivalled efficiencies of light-energy conversion in natural photosynthetic light-harvesting complexes, and triggered the growing interest in the possibility of organic quantum computing. Since biological systems are intrinsically heterogeneous, clear relations between structural and quantum-mechanical properties can only be obtained by investigating individual assemblies. However, single-molecule techniques to access ultrafast coherences at physiological conditions were not available so far. Here we show by employing femtosecond pulse-shaping techniques that quantum coherences in single organic molecules can be created, probed, and manipulated at ambient conditions even in highly disordered solid environments. We find broadly distributed coherence decay times for different individual molecules giving direct insight into the structural heterogeneity of the local surroundings. Most importantly, we induce Rabi-oscillations and control the coherent superposition state in a single molecule, thus performing a basic femtosecond single-qubit operation at room temperature

    Kinesthetic imagery and tool-specific modulation of corticospinal representations in expert tennis players

    No full text
    Specific physical or mental practice may induce short- and long-term neuroplastic changes in the motor system and cause tools to become part of one's own body representation. Athletes who use tools as part of their practice may be an excellent model for assessing the neural correlates of possible bodily representation changes that are specific to extensive practice. We used single-pulse transcranial magnetic stimulation to measure corticospinal excitability in forearm and hand muscles of expert tennis players and novices while they mentally practiced a tennis forehand, table tennis forehand, and a golf drive. The muscles of expert tennis players showed increased corticospinal facilitation during motor imagery of tennis but not golf or table tennis. Novices, although athletes, were not modulated across sports. Subjective reports indicated that only in the tennis imagery condition did experts differ from novices in the ability to form proprioceptive images and to consider the tool as an extension of the hand. Neurophysiological and subjective data converge to suggest a key role of long-term experience in modulating sensorimotor body representations during mental simulation of sports

    The influence of hands posture on mental rotation of hands and feet

    No full text
    Behavioural and functional neuroanatomy studies demonstrate that mental rotation of body parts is carried out through a sort of inner motor simulation. Here we examined whether changes of hands posture influence the mental rotation of hands and feet. Twenty healthy subjects were asked to verbally judge the laterality of hands and feet pictures in two different postural conditions. In one condition, subjects kept hands on their knees in anatomical position; in the other, their hands were kept in an unusual posture with intertwined fingers, behind the back. Results show that mental rotation of hands but not of feet was influenced by changes in hands posture. Indeed, while mental rotation of hands was faster in the front than in the back hands position, no similar effect was found when mentally rotating feet. Thus, sensory-motor and postural information coming from the body may influence mental rotation of body parts according to specific, somatotopic rules

    Motor imagery beyond the joint limits: A transcranial magnetic stimulation study

    No full text
    The processes and neural bases used for motor imagery are also used for the actual execution of correspondent movements. Humans, however, can imagine movements they cannot perform. Here we explored whether plausibility of movements is mapped on the corticospinal motor system and whether the process is influenced by visuomotor vs. kinesthetic-motor first person imagery strategy. Healthy subjects imagined performing possible or biomechanically impossible right index finger movements during single pulse TMS of the left motor cortex. We found an increase of corticospinal excitability during motor imagery which was higher for impossible than possible movements and specific for the muscle involved in the actual execution of the imagined movement. We expand our previous action observation studies, suggesting that the plausibility of a movement is computed in regions upstream the primary motor cortex, and that motor imagery is a higher-order process not fully constrained by the rules that govern motor execution. (c) 2010 Elsevier B.V. All rights reserved
    corecore