6 research outputs found

    Evaluation of laminated structures for sports mouthguards

    Get PDF
    Most of the past studies have concentrated on the properties of mouthguard materials rather than their ability to protect the underlying substructure. Previous work has indicated that the incorporation of a shook absorbing layer into the sports mouthguard reduces the likelihood of injury to the head, neck and oral cavity of the wearer, The purpose of this study is to develop an optimum laminated structure that protects an easily deformable structure during an impact. Dropweight impact tests were conducted on a series of moulded samples which were circularly clamped and force-time and displacement-time plots obtained, Single thickness specimens of ethylene vinyl acetate (EVA), 1-5mm thick were compared with laminated structures of EVA, incorporating 1mm thick layers of polymethylmethacrylate (PMMA) and a silicone or synthetic rubber up to a thickness of 5mm. It was observed that the multi-layered structures exhibited less deformation thereby transmitting less of the harmful effects through the laminate. It was concluded that laminated systems for mouthguards using different materials appear to offer better protection to the wearer

    Response of notched graphite/peek and graphite/epoxy laminates subjected to tension fatigue loading

    No full text
    In this study a comparison is made between the tensile static and fatigue behaviours of quasi-isotropic carbon/PEEK and carbon/epoxy notched laminates, selected as separate representatives of both tough and brittle matrix composites. Damage progression was monitored by various non-destructive (ultrasonic scanning and x-radiography) and destructive (deply and microscopic examinations) techniques, and by continuously measuring the change in stiffness, in order to identify the effect of damage on mechanical properties. The experimental observations indicated that fatigue damage in carbon/epoxy laminates consists of a combination of matrix cracks, longitudinal splitting and delaminations which attenuate the stress concentration and suppress fibre fracture at the notch; as a consequence, fatigue failure can be reached only after very high numbers of cycles while tensile residual strengths continuously increase over the range of lives investigated (103-106 cycles). Due to the superior matrix toughness and the high fibre-matrix adhesion, the nature of fatigue damage in carbon/PEEK laminates strongly depends on the stress level. At high stresses the absence of early splitting and delaminations promotes the propagation of fibre fracture therefore resulting in poor fatigue performances and significant strength reductions; while at low stress levels damage modes are matrix controlled and this again translates into very long fatigue lives. These results indicate a strong influence of the major damage mechanisms typical of the two material systems on the behaviour of the laminates, with the nature, more than the amount, of damage appearing as the controlling parameter of the material response up to failure
    corecore