2,041 research outputs found
Test of a Jastrow-type wavefunction for a trapped few-body system in one dimension
For a system with interacting quantum mechanical particles in a
one-dimensional harmonic oscillator, a trial wavefunction with simple structure
based on the solution of the corresponding two-particle system is suggested and
tested numerically. With the inclusion of a scaling parameter for the distance
between particles, at least for the very small systems tested here the ansatz
gives a very good estimate of the ground state energy, with the error being of
the order of ~1% of the gap to the first excited state
Enhancement of the upper critical field and a field-induced superconductivity in antiferromagnetic conductors
We propose a mechanism by which the paramagnetic pair-breaking effect is
largely reduced in superconductors with coexisting antiferromagnetic long-
range and short-range orders. The mechanism is an extension of the Jaccarino
and Peter mechanism to antiferromagnetic conductors, but the resultant phase
diagram is quite different. In order to illustrate the mechanism, we examine a
model which consists of mobile electrons and antiferromagnetically correlated
localized spins with Kondo coupling between them. It is found that for weak
Kondo coupling, the superconductivity occurs over an extraordinarily wide
region of the magnetic field including zero field. The critical field exceeds
the Chandrasekhar and Clogston limit, but there is no lower limit in contrast
to the Jaccarino and Peter mechanism. On the other hand, for strong Kondo
coupling, both the low-field superconductivity and a field-induced
superconductivity occur. Possibilities in hybrid ruthenate cuprate
superconductors and some organic superconductors are discussed.Comment: 5 pages, 1 figure, revtex.sty, to be published in J.Phys.Soc.Jpn.
Vol.71, No.3 (2002
The generating function for a particular class of characters of SU(n)
We compute the generating function for the characters of the irreducible
representations of SU(n) whose associated Young diagrams have only two rows
with the same number of boxes. The result is a rational determinantal
expression in which both the numerator and the denominator have a simple
structure when expressed in terms of Schur polynomials.Comment: 7 pages, no figure
Root and canopy traits and adaptability genes explain drought tolerance responses in winter wheat
Bread wheat (Triticum aestivum L) is one of the three main staple crops worldwide contributing 20% calories in the human diet. Drought stress is the main factor limiting yields and threatening food security, with climate change resulting in more frequent and intense drought. Developing drought-tolerant wheat cultivars is a promising way forward. The use of holistic approaches that include high-throughput phenotyping and genetic markers in selection could help in accelerating genetic gains. Fifty advanced breeding lines were selected from the CIMMYT Turkey winter wheat breeding program and studied under irrigated and semiarid conditions in two years. High-throughput phenotyping was done for wheat crown root traits and canopy senescence dynamics using vegetation indices (green area using RGB images and Normalized Difference Vegetation Index using spectral reflectance). In addition, genotyping by KASP markers for adaptability genes was done. Overall, under semiarid conditions yield reduced by 3.09 t ha-1 (-46.8%) compared to irrigated conditions. Genotypes responded differently under drought stress and genotypes 39 (VORONA/HD24- 12//GUN/7/VEE#8//. . ./8/ALTAY), 18 (BiII98) and 29 (NIKIFOR//KROSHKA) were the most drought tolerant. Root traits including shallow nodal root angle under irrigated conditions and root number per shoot under semiarid conditions were correlated with increased grain yield. RGB based vegetation index measuring canopy green area at anthesis was better correlated with GY than NDVI was with GY under drought. The markers for five established functional genes (PRR73.A1 -flowering time, TEF-7A -grain size and weight, TaCwi.4A - yield under drought, Dreb1- drought tolerance, and ISBW11.GY.QTL.CANDIDATE- grain yield) were associated with different drought-tolerance traits in this experiment. We conclude that-genotypes 39, 18 and 29 could be used for drought tolerance breeding. The trait combinations of canopy green area at anthesis, and root number per shoot along with key drought adaptability makers (TaCwi.4A and Dreb1) could be used in screening drought tolerance wheat breeding lines
Spin-Triplet Superconductivity Mediated by Phonons in Quasi-One-Dimensional Systems
We investigate the spin-triplet superconductivity mediated by phonons in
quasi-one-dimensional (Q1D) systems with open Fermi surfaces. We obtain the
ground state phase diagrams. It is found that spin-triplet superconductivity
occurs for weak screening and strong on-site Coulomb interaction, even in the
absence of any additional nonphonon pairing interactions. We find that the
nodeless spin-triplet state is more favorable than the spin-triplet state with
line nodes, for the parameter values of the Q1D superconductors (TMTSF)_2X. We
also find that Q1D open Fermi surface, which is the specific feature of this
system, plays an essential role in the pairing symmetry. We discuss the
compatibility of the present results with the experimental results in these
compounds.Comment: 8 pages, 15 figures, with jpsj2.cl
Isotope effect in superconductors with coexisting interactions of phonon and nonphonon mechanisms
We examine the isotope effect of superconductivity in systems with coexisting
interactions of phonon and nonphonon mechanisms in addition to the direct
Coulomb interaction. The interaction mediated by the spin fluctuations is
discussed as an example of the nonphonon interaction. Extended formulas for the
transition temperature Tc and the isotope-effect coefficient alpha are derived
for cases (a) omega_np omega_D, where omega_np is
an effective cutoff frequency of the nonphonon interaction that corresponds to
the Debye frequency omega_D in the phonon interaction. In case (a), it is found
that the nonphonon interaction does not change the condition for the inverse
isotope effect, i.e., mu^* > lambda_ph/2, but it modifies the magnitude of
alpha markedly. In particular, it is found that a giant isotope shift occurs
when the phonon and nonphonon interactions cancel each other largely. For
instance, strong critical spin fluctuations may give rise to the giant isotope
effect. In case (b), it is found that the inverse isotope effect occurs only
when the nonphonon interaction and the repulsive Coulomb interaction, in total
effect, work as repulsive interactions against the superconductivity. We
discuss the relevance of the present result to some organic superconductors,
such as kappa-(ET)2Cu(NCS)2 and Sr2RuO4 superconductors, in which inverse
isotope effects have been observed, and briefly to high-Tc cuprates, in which
giant isotope effects have been observed.Comment: 4 pages, 2 figures, (with jpsj2.cls, ver.1.2), v2:linguistic
correction
The Coupled Electron-Ion Monte Carlo Method
In these Lecture Notes we review the principles of the Coupled Electron-Ion
Monte Carlo methods and discuss some recent results on metallic hydrogen.Comment: 38 pages, 6 figures, Lecture notes for the International School of
Solid State Physics, 34th course: "Computer Simulation in Condensed Matter:
from Materials to Chemical Biology", 20 July-1 August 2005 Erice (Italy). To
appear in Lecture Notes in Physics (2006
The Coupled Electronic-Ionic Monte Carlo Simulation Method
Quantum Monte Carlo (QMC) methods such as Variational Monte Carlo, Diffusion
Monte Carlo or Path Integral Monte Carlo are the most accurate and general
methods for computing total electronic energies. We will review methods we have
developed to perform QMC for the electrons coupled to a classical Monte Carlo
simulation of the ions. In this method, one estimates the Born-Oppenheimer
energy E(Z) where Z represents the ionic degrees of freedom. That estimate of
the energy is used in a Metropolis simulation of the ionic degrees of freedom.
Important aspects of this method are how to deal with the noise, which QMC
method and which trial function to use, how to deal with generalized boundary
conditions on the wave function so as to reduce the finite size effects. We
discuss some advantages of the CEIMC method concerning how the quantum effects
of the ionic degrees of freedom can be included and how the boundary conditions
can be integrated over. Using these methods, we have performed simulations of
liquid H2 and metallic H on a parallel computer.Comment: 27 pages, 10 figure
Relative energetics and structural properties of zirconia using a self-consistent tight-binding model
We describe an empirical, self-consistent, orthogonal tight-binding model for
zirconia, which allows for the polarizability of the anions at dipole and
quadrupole levels and for crystal field splitting of the cation d orbitals.
This is achieved by mixing the orbitals of different symmetry on a site with
coupling coefficients driven by the Coulomb potentials up to octapole level.
The additional forces on atoms due to the self-consistency and polarizabilities
are exactly obtained by straightforward electrostatics, by analogy with the
Hellmann-Feynman theorem as applied in first-principles calculations. The model
correctly orders the zero temperature energies of all zirconia polymorphs. The
Zr-O matrix elements of the Hamiltonian, which measure covalency, make a
greater contribution than the polarizability to the energy differences between
phases. Results for elastic constants of the cubic and tetragonal phases and
phonon frequencies of the cubic phase are also presented and compared with some
experimental data and first-principles calculations. We suggest that the model
will be useful for studying finite temperature effects by means of molecular
dynamics.Comment: to be published in Physical Review B (1 march 2000
- …