16 research outputs found

    Notch3 signaling pathway in cerebral arteries

    No full text
    Le gĂšne Notch3 code pour un rĂ©cepteur transmembranaire hĂ©tĂ©rodimĂ©rique exprimĂ© principalement dans les cellules musculaires lisses des petites artĂšres. Les travaux de ces derniĂšres annĂ©es ont montrĂ© que le rĂ©cepteur Notch3 joue un rĂŽle clĂ© dans la physiologie et la pathologie des petites artĂšres. Chez la souris, Notch3 est requis pour l’intĂ©gritĂ© structurale et fonctionnelle des artĂšres de rĂ©sistance en contrĂŽlant l’identitĂ© artĂ©rielle, la maturation postnatale des cellules musculaires lisses et le tonus myogĂ©nique des artĂšres de rĂ©sistance. Chez l’Homme, les maladies des petites artĂšres cĂ©rĂ©brales (MPAC) regroupent un ensemble hĂ©tĂ©rogĂšne de maladies parmi lesquelles un petit pourcentage, probablement encore sous-estimĂ©e, est hĂ©rĂ©ditaire. A ce jour, trĂšs peu de gĂšnes responsables de formes familiales de MPAC ont Ă©tĂ© identifiĂ©s. CADASIL est la forme familiale la plus frĂ©quente de MPAC causĂ©e par des mutations du gĂšne NOTCH3. Il s’agit de mutations extrĂȘmement stĂ©rĂ©otypĂ©es siĂ©geant dans les rĂ©pĂ©titions EGF qui constituent le domaine extracellulaire de Notch3. Les rĂ©sultats du laboratoire suggĂšrent fortement que l’effet pathogĂšne de ces mutations rĂ©sulte de l’acquisition par le rĂ©cepteur mutĂ© d’une nouvelle fonction. Les deux objectifs de ce travail ont Ă©tĂ© : 1°) Tester l’hypothĂšse qu’il existe des maladies des petites artĂšres cĂ©rĂ©brales causĂ©es directement par une modification de l’activitĂ© du rĂ©cepteur Notch3 2°) Identifier les effecteurs du rĂ©cepteur Notch3 dans le contexte du dĂ©veloppement et de la maturation des artĂšres cĂ©rĂ©brales Nous avons identifiĂ© chez une patiente prĂ©sentant une MPAC distincte de CADASIL une nouvelle mutation siĂ©geant dans le domaine d’hĂ©tĂ©rodimĂ©risation du rĂ©cepteur Notch3. In vitro, la mutation L1515P induit une activation ligand indĂ©pendante du rĂ©cepteur Notch3. L’analyse biochimique suggĂšre que cette activation est causĂ©e par une dĂ©stabilisation du domaine d’hĂ©tĂ©rodimĂ©risation de Notch3.Nous avons rĂ©alisĂ© une analyse du transcriptome des artĂšres caudales de souris Notch3-/- et Notch3+/+. Cette analyse a permis d’identifier un groupe de 17 gĂšnes rĂ©gulĂ©s par Notch3 dans l’artĂšre caudale ou les artĂšres cĂ©rĂ©brales. L’invalidation du facteur de transcription CSL/RBPJK dans les cellules musculaires lisses, pendant la pĂ©riode postnatale immĂ©diate, phĂ©nocopie les altĂ©rations structurales et molĂ©culaires observĂ©es chez les souris Notch3-/-. L’administration chez la souris d’un inhibiteur pharmacologique de la voie Notch a permis d’identifier 6 gĂšnes (Grip2, Nrip2, Kv1.5, Pgam2, Susd5, Xirp1), en plus de Notch3, dont l’expression dans les artĂšres cĂ©rĂ©brales est rapidement diminuĂ©e par ce traitement. Nous avons ensuite concentrĂ© nos efforts sur le gĂšne Grip2 dont l’expression Ă©tait la plus fortement diminuĂ©e dans les diffĂ©rents modĂšles d’inactivation de la voie Notch. Grip2 Ă©tait jusqu’alors connu pour son interaction avec les rĂ©cepteurs au glutamate dans les neurones. Nous avons montrĂ© que Grip2 Ă©tait Ă©galement exprimĂ© dans les cellules musculaires lisses vasculaires et identifiĂ© une isoforme vasculaire rĂ©gulĂ©e spĂ©cifiquement par Notch3/CSL/RBPJK. L’analyse des souris Grip2neo/neo, exprimant une protĂ©ine Grip2 tronquĂ©e dans sa partie N-terminale, a rĂ©vĂ©lĂ© une atteinte sĂ©lective du tonus myogĂ©nique des artĂšres cĂ©rĂ©brales.En conclusion, nous avons dĂ©montrĂ© l’existence d’une mutation activatrice de NOTCH3 associĂ©e Ă  une MPAC chez l’Homme. Nos rĂ©sultats indiquent que dans le contexte de la maturation des artĂšres cĂ©rĂ©brales, la fonction de Notch3 est mĂ©diĂ©e par le facteur de transcription CSL/RBPJK dans les cellules musculaires lisses durant la pĂ©riode postnatale immĂ©diate. Nous avons identifiĂ© plusieurs nouveaux effecteurs potentiels de Notch3 et validĂ© l’un d’entre eux, Grip2, pour son implication dans les rĂ©ponses myogĂ©niques des artĂšres cĂ©rĂ©brales. Nous proposons que des mutations dans les gĂšnes codant pour ces effecteurs puissent rendre compte de certaines formes monogĂ©niques de MPAC.Notch3 encodes a transmembrane receptor primarily expressed in arterial smooth muscle cells. Human and mouse genetics studies demonstrated that Notch3 is a key player in physiology and diseases of small vessels. Studies in mice revealed that Notch3 is required to generate functional arteries in regulating arterial differentiation, maturation of vascular smooth muscle cells and myogenic tone. Cerebral Autosomal Dominant Arteriopathy with Subcortical infarcts and Leukoencephalopathy (CADASIL) is the most frequent hereditary small vessels disease in human adults caused by NOTCH3 mutations. Pathogenic mutations lead to an odd number of cysteine residues within the NOTCH3 extracellular domain. Data from the laboratory suggest a model that invokes novel pathogenic roles from the mutant NOTCH3 protein. The main goals of this work are: 1°) To determine if there is small vessels disease caused by modification of Notch3 activity 2°) To identify Notch3 effectors involved in development and maturation of cerebral arteries We identified a novel heterozygous missense mutation (L1515P) in the heterodimerization domain of NOTCH3 in a patient with cerebral small vessel distinct from CADASIL. In vitro analysis showed that the L1515P mutant exhibits increased canonical NOTCH3 signaling in a ligand-independent manner. Biochemical analysis suggests that the mutation renders NOTCH3 hyperactive through destabilization of the heterodimer. Transcriptome analysis using tail arteries of Notch3-/- and Notch3+/+ mice identified a core set of 17 novel Notch3-regulated genes confirmed in tail or brain arteries. Postnatal deletion of RBP-JÎș in smooth muscle cells recapitulated the structural, functional, and molecular defects of brain arteries induced by Notch3 deficiency. Transient in vivo blockade of the Notch pathway with Îł-secretase inhibitors uncovered, in addition to Notch3, 6 immediate responders, including the voltage-gated potassium channel Kv1.5, which opposes to myogenic constriction of brain arteries, and the glutamate receptor-interacting protein-2, with no previously established role in the cerebrovasculature. We identified a vascular smooth muscle cell isoform of Grip2. We showed that Notch3-RBP-JÎș specifically regulates this isoform. Finally, we found that cerebral arteries of glutamate receptor-interacting protein-2 mutant mice, which express an N-terminally truncated glutamate receptor-interacting protein-2, exhibited selective attenuation of pressure-induced contraction. In conclusion, we have demonstrated the existence of a NOTCH3 activating mutation associated with small vessels disease in human. Our results show that, in the context of cerebral arteries maturation, Notch3 functions are mediated by CSL/RBPJK transcription factor. We have identified several new Notch3 effectors and validated Grip2 as a novel regulator of myogenic tone in cerebral arteries. One can expect that mutations in these Notch3-regulated genes could be responsible of some monogenic form of small vessel diseases of the brain

    Voie de signalisation Notch3 dans les artÚres cérébrales

    No full text
    Le gĂšne Notch3 code pour un rĂ©cepteur transmembranaire hĂ©tĂ©rodimĂ©rique exprimĂ© principalement dans les cellules musculaires lisses des petites artĂšres. Les travaux de ces derniĂšres annĂ©es ont montrĂ© que le rĂ©cepteur Notch3 joue un rĂŽle clĂ© dans la physiologie et la pathologie des petites artĂšres. Chez la souris, Notch3 est requis pour l intĂ©gritĂ© structurale et fonctionnelle des artĂšres de rĂ©sistance en contrĂŽlant l identitĂ© artĂ©rielle, la maturation postnatale des cellules musculaires lisses et le tonus myogĂ©nique des artĂšres de rĂ©sistance. Chez l Homme, les maladies des petites artĂšres cĂ©rĂ©brales (MPAC) regroupent un ensemble hĂ©tĂ©rogĂšne de maladies parmi lesquelles un petit pourcentage, probablement encore sous-estimĂ©e, est hĂ©rĂ©ditaire. A ce jour, trĂšs peu de gĂšnes responsables de formes familiales de MPAC ont Ă©tĂ© identifiĂ©s. CADASIL est la forme familiale la plus frĂ©quente de MPAC causĂ©e par des mutations du gĂšne NOTCH3. Il s agit de mutations extrĂȘmement stĂ©rĂ©otypĂ©es siĂ©geant dans les rĂ©pĂ©titions EGF qui constituent le domaine extracellulaire de Notch3. Les rĂ©sultats du laboratoire suggĂšrent fortement que l effet pathogĂšne de ces mutations rĂ©sulte de l acquisition par le rĂ©cepteur mutĂ© d une nouvelle fonction. Les deux objectifs de ce travail ont Ă©tĂ© : 1) Tester l hypothĂšse qu il existe des maladies des petites artĂšres cĂ©rĂ©brales causĂ©es directement par une modification de l activitĂ© du rĂ©cepteur Notch3 2) Identifier les effecteurs du rĂ©cepteur Notch3 dans le contexte du dĂ©veloppement et de la maturation des artĂšres cĂ©rĂ©brales Nous avons identifiĂ© chez une patiente prĂ©sentant une MPAC distincte de CADASIL une nouvelle mutation siĂ©geant dans le domaine d hĂ©tĂ©rodimĂ©risation du rĂ©cepteur Notch3. In vitro, la mutation L1515P induit une activation ligand indĂ©pendante du rĂ©cepteur Notch3. L analyse biochimique suggĂšre que cette activation est causĂ©e par une dĂ©stabilisation du domaine d hĂ©tĂ©rodimĂ©risation de Notch3.Nous avons rĂ©alisĂ© une analyse du transcriptome des artĂšres caudales de souris Notch3-/- et Notch3+/+. Cette analyse a permis d identifier un groupe de 17 gĂšnes rĂ©gulĂ©s par Notch3 dans l artĂšre caudale ou les artĂšres cĂ©rĂ©brales. L invalidation du facteur de transcription CSL/RBPJK dans les cellules musculaires lisses, pendant la pĂ©riode postnatale immĂ©diate, phĂ©nocopie les altĂ©rations structurales et molĂ©culaires observĂ©es chez les souris Notch3-/-. L administration chez la souris d un inhibiteur pharmacologique de la voie Notch a permis d identifier 6 gĂšnes (Grip2, Nrip2, Kv1.5, Pgam2, Susd5, Xirp1), en plus de Notch3, dont l expression dans les artĂšres cĂ©rĂ©brales est rapidement diminuĂ©e par ce traitement. Nous avons ensuite concentrĂ© nos efforts sur le gĂšne Grip2 dont l expression Ă©tait la plus fortement diminuĂ©e dans les diffĂ©rents modĂšles d inactivation de la voie Notch. Grip2 Ă©tait jusqu alors connu pour son interaction avec les rĂ©cepteurs au glutamate dans les neurones. Nous avons montrĂ© que Grip2 Ă©tait Ă©galement exprimĂ© dans les cellules musculaires lisses vasculaires et identifiĂ© une isoforme vasculaire rĂ©gulĂ©e spĂ©cifiquement par Notch3/CSL/RBPJK. L analyse des souris Grip2neo/neo, exprimant une protĂ©ine Grip2 tronquĂ©e dans sa partie N-terminale, a rĂ©vĂ©lĂ© une atteinte sĂ©lective du tonus myogĂ©nique des artĂšres cĂ©rĂ©brales.En conclusion, nous avons dĂ©montrĂ© l existence d une mutation activatrice de NOTCH3 associĂ©e Ă  une MPAC chez l Homme. Nos rĂ©sultats indiquent que dans le contexte de la maturation des artĂšres cĂ©rĂ©brales, la fonction de Notch3 est mĂ©diĂ©e par le facteur de transcription CSL/RBPJK dans les cellules musculaires lisses durant la pĂ©riode postnatale immĂ©diate. Nous avons identifiĂ© plusieurs nouveaux effecteurs potentiels de Notch3 et validĂ© l un d entre eux, Grip2, pour son implication dans les rĂ©ponses myogĂ©niques des artĂšres cĂ©rĂ©brales. Nous proposons que des mutations dans les gĂšnes codant pour ces effecteurs puissent rendre compte de certaines formes monogĂ©niques de MPAC.Notch3 encodes a transmembrane receptor primarily expressed in arterial smooth muscle cells. Human and mouse genetics studies demonstrated that Notch3 is a key player in physiology and diseases of small vessels. Studies in mice revealed that Notch3 is required to generate functional arteries in regulating arterial differentiation, maturation of vascular smooth muscle cells and myogenic tone. Cerebral Autosomal Dominant Arteriopathy with Subcortical infarcts and Leukoencephalopathy (CADASIL) is the most frequent hereditary small vessels disease in human adults caused by NOTCH3 mutations. Pathogenic mutations lead to an odd number of cysteine residues within the NOTCH3 extracellular domain. Data from the laboratory suggest a model that invokes novel pathogenic roles from the mutant NOTCH3 protein. The main goals of this work are: 1) To determine if there is small vessels disease caused by modification of Notch3 activity 2) To identify Notch3 effectors involved in development and maturation of cerebral arteries We identified a novel heterozygous missense mutation (L1515P) in the heterodimerization domain of NOTCH3 in a patient with cerebral small vessel distinct from CADASIL. In vitro analysis showed that the L1515P mutant exhibits increased canonical NOTCH3 signaling in a ligand-independent manner. Biochemical analysis suggests that the mutation renders NOTCH3 hyperactive through destabilization of the heterodimer. Transcriptome analysis using tail arteries of Notch3-/- and Notch3+/+ mice identified a core set of 17 novel Notch3-regulated genes confirmed in tail or brain arteries. Postnatal deletion of RBP-J in smooth muscle cells recapitulated the structural, functional, and molecular defects of brain arteries induced by Notch3 deficiency. Transient in vivo blockade of the Notch pathway with g-secretase inhibitors uncovered, in addition to Notch3, 6 immediate responders, including the voltage-gated potassium channel Kv1.5, which opposes to myogenic constriction of brain arteries, and the glutamate receptor-interacting protein-2, with no previously established role in the cerebrovasculature. We identified a vascular smooth muscle cell isoform of Grip2. We showed that Notch3-RBP-J specifically regulates this isoform. Finally, we found that cerebral arteries of glutamate receptor-interacting protein-2 mutant mice, which express an N-terminally truncated glutamate receptor-interacting protein-2, exhibited selective attenuation of pressure-induced contraction. In conclusion, we have demonstrated the existence of a NOTCH3 activating mutation associated with small vessels disease in human. Our results show that, in the context of cerebral arteries maturation, Notch3 functions are mediated by CSL/RBPJK transcription factor. We have identified several new Notch3 effectors and validated Grip2 as a novel regulator of myogenic tone in cerebral arteries. One can expect that mutations in these Notch3-regulated genes could be responsible of some monogenic form of small vessel diseases of the brain.PARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF

    Time-resolved dosimetry of pulsed electron beams in very high dose-rate, flash irradiation for radiotherapy preclinical studies

    No full text
    International audienceMost anticancer radiation therapy facilities are based on linear electron accelerators with electron–photon conversion providing dose-rates in the range 0.03-0.40 Gy.s−1, and treatment plans usually involve daily fractions of 2 Gy cumulated for up to reaching a total dose close to the limit of tolerance of the normal tissues that surround tumors. We recently developed another methodology named “FLASH” that relies on very high dose-rate facilities and consists in delivering 10 Gy in a single microsecond pulse of relativistic electrons, or else in a limited number of pulses of 1-2 Gy each given in 100 ms temporal sequence. In mice FLASH was found to elicit a dramatic decrease of damage to normal tissues whilst keeping the anti-tumor efficiency unchanged. In the following we describe the methods used for beam monitoring in the FLASH mode with emphasis on techniques that provide proportional, time-resolved dosimetry of radiation at the submicrosecond time scale. These methods include measurement of the electron fluence, optically monitored chemical dosimeters in water, solid scintillation and Cerenkov light emission. An application to the calibration of Gafchromicℱ films is described and the minimal requirements for dose monitoring in preclinical assays are discussed. Good repeatability and linearity of these techniques in a range of peak dose-rates from 2x102 to 4x107 Gy.s−1 and from 1 mGy to over 30 Gy per microsecond pulse have been obtained with an overall precision better than 2%

    Activating NOTCH3 mutation in a patient with small-vessel-disease of the brain

    No full text
    International audienceThe most common causative diagnosis of hereditary small-vessel-disease of the brain, CADASIL, is due to highly stereotyped mutations in the NOTCH3 receptor. NOTCH3 has 33 exons but all CADASIL mutations occur within the Epidermal Growth Factor-like Repeats encoded by exons 2-24, lead to an odd number of cysteine residues and are associated with GOM deposits and abnormal NOTCH3 protein accumulation. The majority of CADASIL mutations appear to retain normal level of signaling activity, while very few mutations show reduced activity. Herein we identified a novel heterozygous missense mutation (c.4544T>C) in exon 25 of NOTCH3 in a patient with cerebral small-vessel-disease but lacking GOM deposits and NOTCH3 accumulation. The mutation should result in a p.L1515P substitution in the evolutionarily highly conserved juxtamembranous region of NOTCH3, which constitutes the heterodimerization domain. The p.L1515P mutant exhibits increased canonical NOTCH3 signaling, although in a ligand-independent fashion. Biochemical analysis suggests that the mutation renders NOTCH3 hyperactive through destabilization of the heterodimer. Therefore, our study suggests that the p.L1515P mutation falls in a novel mechanistic class of NOTCH3 mutations and that NOTCH3 activating mutations should be further considered for molecular analysis of patients with cerebral small-vessel-disease

    A Comprehensive Analysis of the Relationship Between Dose Rate and Biological Effects in Preclinical and Clinical Studies, From Brachytherapy to Flattening Filter Free Radiation Therapy and FLASH Irradiation

    No full text
    International audiencePurposeFor many years, the effect of dose rate (DR) was considered negligible in external beam radiation therapy (EBRT) until very-high DR (>10 Gy/min) became possible and ultrahigh DR (>40 Gy/s) showed dramatic protection of normal tissues in preclinical experiments. We propose a critical review of preclinical and clinical studies to investigate the biological and clinical effects of DR variation in the range covering brachytherapy to flattening filter free EBRT and FLASH.Methods and MaterialsPreclinical and clinical studies investigating biological and clinical DR effects were reviewed extensively. We also conducted an in silico study to assess the effect of pulse DR (DRp), taking into account the mean time between 2 tracks during the pulse.ResultsPreclinical studies have shown that an increase in DR in the range of 0.01 to 20 Gy/min (not including ultralow or ultrahigh DR) resulted in decreased survival of both normal and tumor cells. This effect was attributed primarily to increasingly unrepaired “sublethal” DNA damage with increasing the DR. However, the models and irradiation conditions have often been very different from one radiobiological study to another. Moreover, the physical parameters on the spatial and temporal microstructure of the beam were not considered systematically. In particular, the DRp was rarely mentioned. The in silico studies showed that for the same average DR, increasing DRp induced an increase of mean track rates. These results could explain the presence of more complex damage when the DRp was increased within the range of DR considered, in relation to the time-dependent probability of accumulating unrepaired, “sublethal” DNA lesions in close proximity.ConclusionsKnowledge of the beam microstructure is critical to understanding the biological impact and the clinical outcomes of radiation at the DR commonly used in radiation therapy

    First Performance Calculations for the Very High Energy Electron Radiation Therapy Experiment at PRAE

    No full text
    International audienceThe Platform for Research and Applications with Electrons (PRAE) project aims at creating a multidisciplinary R&D platform at the Orsay campus, joining various scientific communities involved in radiobiology, subatomic physics, instrumentation, particle accelerators and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and challenging R&D. In this paper we will report the first optics design and performance evaluations of such a multidisciplinary machine, focusing on Very High Energy Electrons (VHEE) innovative Radiation Therapy (RT) applications in particular by allowing Grid and FLASH methodologies, which are likely to represent a major breakthrough in RT. Functional specifications include beam intensities to produce dose rates from 2 Gy/min to 100Gy/sec, beam sizes with diameters from 0.5 mm to 10 cm or more of homogeneous beams and monitoring devices with accuracy in the order of 1-2% for single or multiple beams and single or multiple fractions in biological and ppreclinical applications. High energies (>140 MeV) would be also needed for GRID therapy

    Optics design and beam dynamics simulation for a VHEE radiobiology beam line at PRAE accelerator

    No full text
    International audienceThe Platform for Research and Applications with Electrons (PRAE) is a multidisciplinary R&D facility gathering subatomic physics, instrumentation, radiobiology and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV. In this paper we report the complete optics design and performance evaluation of a Very High Energy Electron (VHEE) innovative radiobiology study, in particular by using Grid mini-beam and FLASH methodologies, which could represent a major breakthrough in Radiation Therapy (RT) treatment modality
    corecore