13 research outputs found
Recommended from our members
Analysis of gas chromatography/mass spectrometry data for catalytic lignin depolymerization using positive matrix factorization
Various catalytic technologies are being developed to efficiently convert lignin into renewable chemicals. However, due to its complexity, catalytic lignin depolymerization often generates a wide and complex distribution of product compounds. Gas chromatography/mass spectrometry (GC-MS) is a common analytical technique to profile the compounds that comprise lignin depolymerization products. GC-MS is applied not only to determine the product composition, but also to develop an understanding of the catalytic reaction pathways and of the relationships among catalyst structure, reaction conditions, and the resulting compounds generated. Although a very useful tool, the analysis of lignin depolymerization products with GC-MS is limited by the quality and scope of the available mass spectral libraries and the ability to correlate changes in GC-MS chromatograms to changes in lignin structure, catalyst structure, and other reaction conditions. In this study, the GC-MS data of the depolymerization products generated from organosolv hybrid poplar lignin using a copper-doped porous metal oxide catalyst and a methanol/dimethyl carbonate co-solvent was analyzed by applying a factor analysis technique, positive matrix factorization (PMF). Several different solutions for the PMF model were explored. A 13-factor solution sufficiently explains the chemical changes occurring to lignin depolymerization products as a function of lignin, reaction time, catalyst, and solvent. Overall, seven factors were found to represent aromatic compounds, while one factor was defined by aliphatic compounds
How chip size impacts steam pretreatment effectiveness for biological conversion of poplar wood into fermentable sugars
BACKGROUND: Woody biomass is highly recalcitrant to enzymatic sugar release and often requires significant size reduction and severe pretreatments to achieve economically viable sugar yields in biological production of sustainable fuels and chemicals. However, because mechanical size reduction of woody biomass can consume significant amounts of energy, it is desirable to minimize size reduction and instead pretreat larger wood chips prior to biological conversion. To date, however, most laboratory research has been performed on materials that are significantly smaller than applicable in a commercial setting. As a result, there is a limited understanding of the effects that larger biomass particle size has on the effectiveness of steam explosion pretreatment and subsequent enzymatic hydrolysis of wood chips. RESULTS: To address these concerns, novel downscaled analysis and high throughput pretreatment and hydrolysis (HTPH) were applied to examine whether differences exist in the composition and digestibility within a single pretreated wood chip due to heterogeneous pretreatment across its thickness. Heat transfer modeling, Simons’ stain testing, magnetic resonance imaging (MRI), and scanning electron microscopy (SEM) were applied to probe the effects of pretreatment within and between pretreated wood samples to shed light on potential causes of variation, pointing to enzyme accessibility (i.e., pore size) distribution being a key factor dictating enzyme digestibility in these samples. Application of these techniques demonstrated that the effectiveness of pretreatment of Populus tremuloides can vary substantially over the chip thickness at short pretreatment times, resulting in spatial digestibility effects and overall lower sugar yields in subsequent enzymatic hydrolysis. CONCLUSIONS: These results indicate that rapid decompression pretreatments (e.g., steam explosion) that specifically alter accessibility at lower temperature conditions are well suited for larger wood chips due to the non-uniformity in temperature and digestibility profiles that can result from high temperature and short pretreatment times. Furthermore, this study also demonstrated that wood chips were hydrated primarily through the natural pore structure during pretreatment, suggesting that preserving the natural grain and transport systems in wood during storage and chipping processes could likely promote pretreatment efficacy and uniformity
Targeted metatranscriptomics of compost derived consortia reveals a GH11 exerting an unusual exo-1,4-β-xylanase activity
Background: Using globally abundant crop residues as a carbon source for energy generation and renewable chemicals production stands out as a promising solution to reduce current dependency on fossil fuels. In nature, such as in compost habitats, microbial communities efficiently degrade the available plant biomass using a diverse set of synergistic enzymes. However, deconstruction of lignocellulose remains a challenge for industry due to recalcitrant nature of the substrate and the inefficiency of the enzyme systems available, making the economic production of lignocellulosic biofuels difficult. Metatranscriptomic studies of microbial communities can unveil the metabolic functions employed by lignocellulolytic consortia and identify new biocatalysts that could improve industrial lignocellulose conversion. Results: In this study, a microbial community from compost was grown in minimal medium with sugarcane bagasse sugarcane bagasse as the sole carbon source. Solid-state nuclear magnetic resonance was used to monitor lignocellulose degradation; analysis of metatranscriptomic data led to the selection and functional characterization of several target genes, revealing the first glycoside hydrolase from Carbohydrate Active Enzyme family 11 with exo-1,4-β-xylanase activity. The xylanase crystal structure was resolved at 1.76 Å revealing the structural basis of exo-xylanase activity. Supplementation of a commercial cellulolytic enzyme cocktail with the xylanase showed improvement in Avicel hydrolysis in the presence of inhibitory xylooligomers. Conclusions: This study demonstrated that composting microbiomes continue to be an excellent source of biotechnologically important enzymes by unveiling the diversity of enzymes involved in in situ lignocellulose degradation
Recommended from our members
Analysis of gas chromatography/mass spectrometry data for catalytic lignin depolymerization using positive matrix factorization
Various catalytic technologies are being developed to efficiently convert lignin into renewable chemicals. However, due to its complexity, catalytic lignin depolymerization often generates a wide and complex distribution of product compounds. Gas chromatography/mass spectrometry (GC-MS) is a common analytical technique to profile the compounds that comprise lignin depolymerization products. GC-MS is applied not only to determine the product composition, but also to develop an understanding of the catalytic reaction pathways and of the relationships among catalyst structure, reaction conditions, and the resulting compounds generated. Although a very useful tool, the analysis of lignin depolymerization products with GC-MS is limited by the quality and scope of the available mass spectral libraries and the ability to correlate changes in GC-MS chromatograms to changes in lignin structure, catalyst structure, and other reaction conditions. In this study, the GC-MS data of the depolymerization products generated from organosolv hybrid poplar lignin using a copper-doped porous metal oxide catalyst and a methanol/dimethyl carbonate co-solvent was analyzed by applying a factor analysis technique, positive matrix factorization (PMF). Several different solutions for the PMF model were explored. A 13-factor solution sufficiently explains the chemical changes occurring to lignin depolymerization products as a function of lignin, reaction time, catalyst, and solvent. Overall, seven factors were found to represent aromatic compounds, while one factor was defined by aliphatic compounds
The effect of liquid hot water pretreatment on the chemical–structural alteration and the reduced recalcitrance in poplar
Abstract Background Hydrothermal pretreatment using liquid hot water (LHW) is capable of substantially reducing the cell wall recalcitrance of lignocellulosic biomass. It enhances the saccharification of polysaccharides, particularly cellulose, into glucose with relatively low capital required. Due to the close association with biomass recalcitrance, the structural change of the components of lignocellulosic materials during the pretreatment is crucial to understand pretreatment chemistry and advance the bio-economy. Although the LHW pretreatment has been extensively applied and studied, the molecular structural alteration during pretreatment and its significance to reduced recalcitrance have not been well understood. Results We investigated the effects of LHW pretreatment with different severity factors (log R 0) on the structural changes of fast-grown poplar (Populus trichocarpa). With the severity factor ranging from 3.6 to 4.2, LHW pretreatment resulted in a substantial xylan solubilization by 50–77% (w/w, dry matter). The molecular weights of the remained hemicellulose in pretreated solids also have been significantly reduced by 63–75% corresponding to LHW severity factor from 3.6 to 4.2. In addition, LHW had a considerable impact on the cellulose structure. The cellulose crystallinity increased 6–9%, whereas its degree of polymerization decreased 35–65% after pretreatment. We found that the pretreatment severity had an empirical linear correlation with the xylan solubilization (R 2 = 0.98, r = + 0.99), hemicellulose molecular weight reduction (R 2 = 0.97, r = − 0.96 and R 2 = 0.93, r = − 0.98 for number-average and weight-average degree of polymerization, respectively), and cellulose crystallinity index increase (R 2 = 0.98, r = + 0.99). The LHW pretreatment also resulted in small changes in lignin structure such as decrease of β-O-4′ ether linkages and removal of cinnamyl alcohol end group and acetyl group, while the S/G ratio of lignin in LHW pretreated poplar residue remained no significant change compared with the untreated poplar. Conclusions This study revealed that the solubilization of xylan, the reduction of hemicellulose molecular weights and cellulose degree of polymerization, and the cleavage of alkyl–aryl ether bonds in lignin resulted from LHW pretreatment are critical factors associated with reduced cell wall recalcitrance. The chemical–structural changes of the three major components, cellulose, lignin, and hemicellulose, during LHW pretreatment provide useful and fundamental information of factors governing feedstock recalcitrance during hydrothermal pretreatment