11 research outputs found

    Hydride generation using a metallic atomizer after microwave-assisted extraction for inorganic arsenic speciation in biological samples

    Get PDF
    AbstractThe present speciation method reports the determination of inorganic arsenic forms, using metallic furnace hydride generation atomic absorption spectrometry. The inorganic As speciation is carried out using mild conditions for hydride formation, such as slightly acid pH media (4.50) and low tetrahydridoborate(1−) concentration (0.1% (w/v)). Limits of detection and quantification of 2.0 and 6.6μgL−1 of iAs(III) are obtained using optimized conditions. Additionally, microwave-assisted extraction using water as solvent is carried out to provide the appropriate environment for As species extraction as well as impeding inter-conversion between species. With these analytical strategies, As was accurately determined (at 99.9% confidence level) in water and plankton samples

    Influence Of Deforestation On The Mercury Air/soil Exchange In The Negro River Basin, Amazon

    No full text
    An investigation of air/surface exchange of mercury, performed at the Negro River Basin, (Amazonian region) in January 2003 and January 2004, is presented. Five sites were investigated: a flooding primary forest, a non-flooding primary forest and three deforested areas. The fluxes were estimated by using a dynamic flux chamber with sampling times varying between 6 and 12 h. The average mercury flux in deforested sites (13.7±10.3 pmol m-2 h -1) was significantly higher than in forest sites (0.1±1.8 pmol m-2 h-1). Our results showed that deforestation could be responsible for significantly increasing soil Hg emissions, mainly because of the high soil temperatures reached in deforested sites. Atmospheric gaseous mercury concentrations were generally low when compared with background areas from the Northern hemisphere. The average atmospheric Hg concentrations were 1.4±0.9 and 0.4±0.2 ng m-3 for forest and deforested sites, respectively. © 2005 Elsevier Ltd. All rights reserved.3939 SPEC. ISS.75187528Artaxo, P., De Campos, R.C., Fernandes, E.T., Martins, J.V., Xiao, Z.F., Lindqvist, O., Fernandez-Jimenez, M.T., Large scale mercury and trace element measurements in the Amazon basin (2000) Atmospheric Environment, 34 (24), pp. 4085-4096Bahlmann, E., Ebinghaus, R., Process studies on mercury fluxes over different soils with a laboratory flux measurement system (2003) Journal de Physique IV, 107, pp. 99-102Bloom, N., Fitzgerald, W.F., Determination of volatile mercury species at the picogram level by low temperature gas chromatography with cold-vapour atomic fluorescence detection (1988) Analytica Chimica Acta, 208, pp. 151-161Carpi, A., Lindberg, S.E., The sunlight mediated emission of sludge (1997) Environmental Science and Technology, 31, pp. 2091-2185Carpi, A., Lindberg, S.E., Application of a Teflon (TM) dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil (1998) Atmospheric Environment, 32 (5), pp. 873-882De La Rosa, D.A., Volke-Sepulveda, T., Solorzano, G., Green, C., Tordon, R., Beauchamp, S., Survey of atmospheric total gaseous mercury in Mexico (2004) Atmospheric Environment, 38 (29), pp. 4839-4846De Oliveira, A.A., Daly, D.C., (2001) Florestas Do Rio Negro, 339p. , Companhia das Letras: UNIP, São PauloDumarey, R., Temmerman, E., Dams, R., Hoste, J., The accuracy of the vapor-injection calibration method for the determination of mercury by amalgamation cold-vapor atomic-absorption spectrometry (1985) Analytica Chimica Acta, 170, pp. 337-340Ebinghaus, R., Jennings, S.G., Schoeder, W.H., Berg, T., Donaghy, T., Guentzel, J., Kenny, C., Xiao, Z., International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland (1999) Atmospheric Environment, 33, pp. 3063-3073(1994) Mercury Atmospheric Processes: A Synthesis Report, , EPRI/TR-104214, Tampa, Florida, September, 1994Fadini, P.S., Jardim, W.F., Is the Negro River Basin (Amazon) impacted by naturally occurring mercury? (2001) Science of the Total Environment, 275 (1-3), pp. 71-82Fitzgerald, W.F., Mason, R.P., Biogeochemical cycling of mercury in the marine environment (1997) Metal Ions in Biological Systems, 34, pp. 53-111Fostier, A.H., Forti, M.C., Guimarães, J.R.D., Melfi, A.J., Boulet, R., Krug, J.F., Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapá State, Brazil) (2000) Science of the Total Environment, 260, pp. 201-211Franzinelli, E., Igreja, H., Modern sedimentation in the lower Negro river, Amazonas state, Brazil (2002) Geomorphology, 44 (3-4), pp. 259-271Gao, F., Yates, S.R., Simulation of enclosure-based methods for measuring gas emissions from soil to the atmosphere (1998) Journal of Geophysical Research-Atmospheres, 103 (D20), p. 26Gillis, A., Miller, D.R., Some potential errors in the measurement of mercury gas exchange at the soil surface using a dynamic flux chamber (2000) Science of the Total Environment, 260, pp. 181-189Gustin, M.S., Taylor, G.E., Leonard, T.L., Keislar, R.E., Atmospheric mercury concentrations associated with geologically and anthropogenically enriched sites in central western Nevada (1996) Environmental Science and Technology, 30, pp. 2572-2579Gustin, M.S., Taylor, G.E., Maxey, R.A., Effect of temperature and air movement on the flux of elemental mercury from substrate to the atmosphere (1997) Journal of Geophysical Research-Atmospheres, 102 (D3), pp. 3891-3898Gustin, M.S., Lindberg, S., Marsik, F., Casimir, A., Ebinghaus, R., Edwards, G., Hubble-Fitzgerald, C., Zhang, H.J., Nevada STORMS project: Measurement of mercury emissions from naturally enriched surfaces (1999) Journal of Geophysical Research-Atmospheres, 104 (D17), p. 21Gustin, M.S., Ericksen, J.A., Schorran, D.E., Johnson, D.W., Lindberg, S.E., Coleman, J.S., Application of controlled mesocosms for understanding mercury air-soil-plant exchange (2004) Environmental Science and Technology, 38 (22), pp. 6044-6050Harris, D.C., (2003) Quantitative Chemical Analysis, Sixth Ed., 131p. , Freeman and Company Pub., New York(1998) Folha Topográfica SA-20, Manaus escala 1:1,000,000 (1998), , http://www.ibge.gov.br, Instituto Brasileiro de Geografia e Estatística. Official website:(2004) Monitoramento Da Floresta Amazônica Por Satélite, , http://www.obt.inpe.br/prodes.index.html, Instituto Nacional de Pesquisas Espaciais/Ministério da Ciência e Tecnologia. Official website:Kim, K.H., Lindberg, S.E., Meyers, T.P., Micrometeorological measurements of mercury-vapor fluxes over background forest soils in Eastern Tennessee (1995) Atmospheric Environment, 29 (2), pp. 267-282Kim, K.H., Ebinghaus, R., Schroeder, W.H., Blanchard, P., Kock, H.H., Steffen, A., Froude, F.A., Kim, J.H., Atmospheric mercury concentrations from several observatory sites in the northern hemisphere (2005) Journal of Atmospheric Chemistry, 50 (1), pp. 1-24Lacerda, L.D., De Souza, M., Ribeiro, M.G., The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon (2004) Environmental Pollution, 129 (2), pp. 247-255Lindberg, S.E., Price, J.L., Airborne emissions of mercury from municipal landfill operations: A short-term measurement study in Florida (1999) Journal of the Air and Waste Management Association, 49 (5), pp. 520-532Lindberg, S.E., Meyers, T.P., Taylor, G.E., Turner, R.R., Schroeder, W.H., Atmosphere-surface exchange of mercury in a forest - Results of modeling and gradient approaches (1992) Journal of Geophysical Research-Atmospheres, 97 (D2), pp. 2519-2528Lindberg, S.E., Hanson, P.J., Meyers, T.P., Kim, K.H., Air/surface exchange of mercury vapor over forests - The need for a reassessment of continental biogenic emissions (1998) Atmospheric Environment, 32 (5), pp. 895-908Lindberg, S.E., Zhang, H., Gustin, A., Vette, A., Marsik, F., Owens, J., Casimir, A., Xiao, A., Increases in mercury emissions from desert soils in response to rainfall and irrigation (1999) Journal of Geophysical Research, 104 (D17), p. 21Magarelli, G., Fostier, A.H., Quantificação de fluxos de mercúrio gasoso na interface solo/atmosfera utilizando câmara de fluxo dinâmica: Aplicação na Bacia do Rio Negro (2005) Química Nova, 28 (6). , in pressMiller, J.N., Miller, J.C., (2000) Statistic and Chemometrics for Analytical Chemistry, Fourth Ed., 271p. , Pearson, HarlowPoissant, L., Casimir, A., Water-air and soil-air exchange rate of total gaseous mercury measured at background sites (1998) Atmospheric Environment, 32 (5), pp. 883-893Porcella, D.B., Chu, P., Allan, M.A., Inventory of North America Hg emissions to the atmosphere (1996) Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances, , W. Baeyens R. Ebinghaus O. Vasiliev NATO ASI Series. Kluwer Academic Pub. DordrechtRoulet, M., Lucotte, M., Canuel, R., Farella, N., Courcelles, M., Guimarães, J.R.D., Mergler, D., Amorim, M., Increase in mercury contamination recorded in lacustrine sediments following deforestation in the central Amazon (2000) Chemical Geology, 165 (3-4), pp. 243-266Schluter, K., Review: Evaporation of mercury from soils (2000) An Integration and Synthesis of Current Knowledge. Environmental Geology, 39 (3-4), pp. 249-271Schroeder, W.H., Munthe, J., Atmospheric mercury - An overview (1998) Atmospheric Environment, 32, pp. 809-822Schroeder, W.H., Munthe, J., Lindqvist, O., Cycling of mercury between water, air, and soil compartments of the environment (1989) Water Air and Soil Pollution, 48 (3-4), pp. 337-347Schroeder, W.H., Keeler, G., Kock, H., Roussel, P., Schneeberger, D., Schaedlich, F., International field intercomparison of atmospheric mercury measurements methods (1995) Water Air and Soil Pollution, 80 (1-4), pp. 611-620Slemr, F., Langer, E., Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic-Ocean (1992) Nature, 355 (6359), pp. 434-437Venables, W.N., Ripley, B.D., (2002) Modern Applied Statistics with S, Fourth Ed., 495p. , Springer, BerlinWallschager, D., Turner, R.R., London, J., Ebinghaus, R., Kock, H.H., Sommar, J., Xiao, Z., Factors affecting the measurements of mercury emissions from soils with flux chambers (1999) Journal of Geophysical Research, 104 (D17), p. 21Wang, S., Feng, X., Qiu, G., The study of mercury exchange rate between air and soil surface in Hongfeng reservoir region, Guizhou, PR China (2003) Journal de Physique IV, 107, pp. 1357-1360Xiao, Z.F., Munthe, J., Schroeder, W.H., Lindqvist, O., Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden (1991) Tellus Series B-Chemical and Physical Meteorology, 43 (3), pp. 267-279Zhang, H., Lindberg, S.E., Processes influencing the emission of mercury from soils: A conceptual model (1999) Journal of Geophysical Research-Atmospheres, 104 (D17), p. 21Zhang, H., Lindberg, S.E., Marsik, F.J., Keeler, G.J., Mercury air/surface exchange kinetics of background soils of the Tahquamenon river watershed in the Michigan upper peninsula (2001) Water Air and Soil Pollution, 126 (1-2), pp. 151-169Zhang, H., Lindberg, S.E., Barnett, M.O., Vette, A.F., Gustin, M.S., Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils Part 1: Simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model (2002) Atmospheric Environment, 36 (5), pp. 835-84

    Arsenic Removal From Water Employing Heterogeneous Photocatalysis With Tio2 Immobilized In Pet Bottles

    No full text
    Arsenic oxidation (As(III) to As(V)) and As(V) removal from water were assessed by using TiO2 immobilized in PET (polyethylene terephthalate) bottles in the presence of natural sunlight and iron salts. The effect of many parameters was sequentially studied: TiO2 concentration of the coating solution, Fe(II) concentration, pH, solar irradiation time; dissolved organic carbon concentration. The final conditions (TiO2 concentration of the coating solution: 10%; Fe(II): 7.0 mg l-1; solar exposure time: 120 min) were applied to natural water samples spiked with 500 μg l-1 As(III) in order to verify the influence of natural water matrix. After treatment, As(III) and total As concentrations were lower than the limit of quantitation (2 μg l-1) of the voltammetric method used, showing a removal over 99%, and giving evidence that As(III) was effectively oxidized to As(V). The results obtained demonstrated that TiO2 can be easily immobilized on a PET surface in order to perform As(III) oxidation in water and that this TiO2 immobilization, combined with coprecipitation of arsenic on Fe(III) hydroxides(oxides) could be an efficient way for inorganic arsenic removal from groundwaters. © 2008 Elsevier Ltd. All rights reserved.722319324Bissen, M., Vieillard-Baron, M.M., Schindelin, A.J., Frimmel, F.H., TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples (2001) Chemosphere, 44, pp. 751-757Borba, R.P., Figueiredo, B.R., Matschullat, J., Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from iron quadrangle, Brazil (2003) Environ. Geol., 44, pp. 39-52CONAMA (Conselho Nacional do Meio Ambiente), 2005. Resolution n° 357 of 17/03/2005, D.O.U. of 31/03/05, Brasília, p. 72Cullen, W.R., Reimer, K.J., Arsenic speciation in the environment (1989) Chem. Rev., 89, pp. 713-764Dutta, P.K., Pehkonen, S.O., Sharma, V.K., Ray, A.K., Photocatalytic oxidation of arsenic(III): evidence of hydroxyl radicals (2005) Environ. Sci. Technol., 39, pp. 1827-1834Fergusson, M.A., Hering, J.G., TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor (2006) Environ. Sci. Technol., 40, pp. 4261-4267Garcia, M.G., d'Hiriart, J., Giullitti, J., Lin, H., Custo, G., Hidalgo, M.d.V., Litter, M.I., Blesa, M.A., Solar light induced removal of arsenic from contaminated groundwater: the interplay of solar energy and chemical variables (2004) Sol. Energy, 77, pp. 601-613Goldberg, S., Johnston, C.T., Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling (2001) J. Colloid Interf. Sci., 234, pp. 204-216Hugh, S., Canonica, L., Wegelin, M., Gechter, D., Von Guten, U., Solar oxidation and removal of arsenic at circumneutral pH in iron containing waters (2001) Environ. Sci. Technol., 35, pp. 2114-2121Impellitteri, C.A., Scheckel, K.G., The distribution, solid-phase speciation, and desorption/dissolution of As in waste iron-based drinking water treatment residuals (2006) Chemosphere, 64, pp. 875-880Jain, A., Raven, K.P., Loeppert, R.H., Arsenite and arsenate adsorption on ferrihydrite: surface charge reduction and net OH- release stoichiometry (1999) Environ. Sci. Technol., 33, pp. 1179-1184Jayaweera, P.M., Godakumbra, P.I., Pathiartne, K.A.S., Photocatalytic oxidation of As(III) to As(V) in aqueous solutions: a low cost pre-oxidative treatment for total removal of arsenic from water (2003) Curr. Sci. India, 84, pp. 541-543Katsoyiannis, I.A., Hugh, S.J., Ammann, A., Zikoudi, A., Hatziliontos, C., Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment (2007) Sci. Total Environ., 383, pp. 128-140Kim, M.J., Nriagu, J.O., Oxidation of arsenic in drinking water by ozone and oxygen (2000) Sci. Total Environ., 247, pp. 71-78Lee, H., Choi, W., Photocatalytic oxidation of arsenite in TiO2 suspension: kinetics and mechanisms (2002) Environ. Sci. Technol., 36, pp. 3872-3878Meichtry, J.M., Lin, H.J., de la Fuente, L., Levy, I.K., Gautier, E.A., Blesa, M.A., Litter, M., Low-cost TiO2 photocatalytic technology for water potabilization in plastic bottles for isolated regions. Photocatalyst fixation (2007) J. Sol. Energ-T ASME, 129, pp. 119-126Nogueira, R.F.P., Jardim, W.F., Heterogeneous photocatalysis and its environmental applications (1998) Quim. Nova, 21, pp. 69-72Nordstrom, D.K., Worldwide occurrences of arsenic in groundwater (2002) Science, 296, pp. 2143-2145Oscarson, D.W., Huang, P.M., Defosse, C., Herbillon, A., Oxidative power of Mn(IV) and Fe(III) oxides with respect to As(III) in terrestrial and aquatic environments (1981) Nature, 291, pp. 50-51Pereira, M.S.S., Winter, E., Guimarães, J.R., Rath, S., Fostier, A.H., A simple voltammetric procedure for speciation and evaluation of As removal from water (2007) Environ. Chem. Lett., 5, pp. 137-141Pettine, M., Millero, F.J., Effect of metals on the oxidation of As(III) with H2O2 (2000) J. Mar. Chem., 70, pp. 223-234Ryu, J., Choi, W., Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: the role of superoxides (2004) Environ. Sci. Technol., 38, pp. 2928-2933Siegel, M., McConnell, P., Ilges, A., Chen, H.-W., Ghassemi, A. Thompson, R. 2006. Development and evaluation of innovative arsenic adsorption technologies for drinking water by the arsenic water technology partnership. In: Proceedings of the 2006 National Groundwater Association Meeting on Naturally Occurring Contaminants Conference, Albuquerque, NM February, pp. 6-7Wegelin, M., Back to the household - also in water treatment (2000) EAWAG News, 48, pp. 11-12Zhang, F.S., Itoh, H., Photocatalytic oxidation and removal of arsenite from water using slag-iron oxide-TiO2 adsorbent (2006) Chemosphere, 65, pp. 125-13

    Occurrence, Behavior And Environmental Impacts Caused By The Presence Of Veterinary Antimicrobials In Soils [ocorrência, Comportamento E Impactos Ambientais Provocados Pela Presença De Antimicrobianos Veterinários Em Solos]

    No full text
    Antimicrobials, among other veterinary drugs, are used worldwide in industry and agriculture to protect animal health and prevent economic loss. In recent years, they have been detected in various environmental compartments, including soil, surface and groundwater and have become a topic of research interest. Emphasizing this class of compounds, this review presents the different pathways which veterinary drugs enter in the environment, in particular contaminate soils. Also are presented regulatory aspects and guidelines, adsorption/desorption and degradation of these compounds in soils and the consequences of its dispersal in the environment.351159169Díaz-Cruz, M.S., De Alda, J.L., Barceló, D., (2003) Trends Anal, Chem, 22, p. 340Boxall, A.B.A., Kolpin, D.W., Halling-Sørensen, B.H., Tolls, J., (2003) Environ. Sci. Technol, pp. 287ASarmah, A.K., Meyer, M.T., Boxall, A.B.A., (2006) Chemosphere, 65, p. 725Kemper, N., (2008) Ecological Indicators, 8, p. 1Bao, Y., Zhou, Q., Guan, L., Wang, Y., (2009) Waste Management, 29, p. 1416(1997) Note for Guidance: Environmental Risk Assessment for Veterinary Medical Products Other Than GMO-Containing and Immunological Products, , EMEA, Committee for Veterinary and Medical Products: LondonRegulation (EC) No 1831/, 2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition, , European Commission (EC)Díaz-Cruz, M.S., Barceló, D., (2007) Trends Anal, Chem, 26, p. 637Kolls, S.A.E., Moltmann, J.F., Knacker, T., (2008) Regulatory Toxicologyand Pharmacology, 50, p. 59http://www.ifaheurope.org/CommonTP.aspx?SubMenuId=37&MenuId=3, acessada em Novembro 2010http://www.sindan.org.br/sd/sindan/index.html, acessada em Novembro 2010Haller, M.Y., Müller, S.R., McArdell, C.S., Alder, A.C., Suter, M.J.F., (2002) J. Chromatogr. A, 952, p. 111Jjemba, P.K., (2002) Agriculture Ecosystems, and Environment, 93, p. 267Yu, T.H., Lin, A.Y.C., Lateef, S.K., Lin, C.F., Yang, P.Y., (2009) Chemosphere, 77, p. 175Beause, J., (2004) Trends Anal, Chem, 23, p. 753Dolliver, H., Kumar, K., Gupta, S., (2007) J. Environ. Qual, 36, p. 1224Christian, T., Schneider, R.J., Farber, H.A., Skutlarek, D., Meyer, M.T., Goldbach, H.E., (2003) Acta Hydrochimica et, Hydrobiologica, 31, p. 36Hamscher, G., Sczesny, S., Höper, H., Nau, H., (2002) Anal. Chem, 74, p. 1509Stoob, K., Singer, H.P., Mueller, S.R., Schwarzenbach, R.P., Stamm, C.H., (2007) Environ. Sci. Technol, 41, p. 7349Aga, D.S., O'Connor, S., Ensley, S., Payero, J.O., Snow, D., Tarkalson, D., (2005) J. Agric. Food Chem, 53, p. 7165Thiele-Bruhn, S., (2003) J. Plant Nutr. Soil Sci, 166, p. 145Chander, Y., Kumar, K., Goyal, S.M., Gupta, S.C., (2005) J. Environ. Qual, 34, p. 1952Zhou, X., Chen, C., Yue, L., Sun, Y., Ding, H., Liu, Y., (2008) Environ. Toxicol. Pharmacol, 26, p. 272Kinney, C.A., Furlong, E.T., Kolpin, D.W., Burkhardt, M.R., Zaugg, S.D., Werner, S.L., Bossio, J.P., Benotti, M.J., (2008) Environ. Sci. Technol, 42, p. 1863Boxall, A.B.A., Johnson, P., Smith, E.J., Sinclair, C.J., Stutt, E., Levy, L.S., (2006) J. Agric. Food Chem, 54, p. 2288Kumar, K., Gupta, S.C., Baidoo, S.K., Chander, Y., Rosen, C.J., (2005) J. Environ. Qual, 34, p. 2082Migliore, L., Civitareale, C., Brambilla, G., Cozzolino, S., Casoria, P., Gaudio, L., (1997) Agriculture Ecosystems, and Environment, 65, p. 163Migliore, L., Civitareale, C., Cozzolino, S., Casoria, P., Brambilla, G., Gaudio, L., (1998) Chemosphere, 37, p. 2957Jjemba, P.K., (2002) Chemosphere, 46, p. 1019Sengeløv, G., Agersø, Y., Halling-Sørensen, B., Baloda, S.B., Andersen, J.S., Jensen, L.B., (2003) Environment International, 28, p. 587(2004) Guidance on Pre-Approval Information for Registration of New Veterinary Medical Products for Food-Producing Animals with Respect to Antimicrobial Resistance, , http://www.fda.gov/downloads/AnimalVeterinary/ GuidanceComplianceEnforcement/GuidanceforIndustry/ucm052524.pdf, VICH, acessada em Novembro 2010(2003) Evaluating the Safety of Antimicrobial New Drugs with Regard to Their Microbiological Effects on Bacteria of Human Health Concern, , http://www.fda.gov/downloads/AnimalVeterinary/ GuidanceComplianceEnforcement/GuidanceforIndustry/UCM052519.pdf, FDAGuidance for Industry no 152, Novembro 2010Morris, A.K., Masterton, R.G., (2002) J. Antimicrob. Chemother, 49, p. 7Jensen, L.B., Baloda, S., Boye, M., Aarestrup, F.M., (2001) Environment International, 26, p. 581Onan, L.J., LaPara, T.M., (2003) Fed. Eur. Microbiol. Soc, 220, p. 15Venglovsky, J., Sasakova, N., Placha, I., (2009) Bioresour. Technol, 100, p. 5386Picó, Y., Andreu, V., (2007) Anal. Bioanal. Chem, 387, p. 1287O'Connor, S., Aga, D.S., (2007) Trends Anal, Chem, 26, p. 456Andreu, V., Vazquez-Roig, P., Blasco, C., Pico, Y., (2009) Anal. Bioanal. Chem, 394, p. 1329Watkinson, A.J., Murby, E.J., Kolpin, D.W., Costanzo, S.D., (2009) Sci. Total Environ, 407, p. 2711Kolpin, D.W., Skopec, M., Meyer, M.T., Furlong, E.T., Zaugg, S.D., (2004) Sci. Total Environ, 328, p. 119Lindsey, M.E., Meyer, M., Thurman, E.M., (2001) Anal. Chem, 73, p. 4640Yang, S., Carlson, K., (2003) Water Res, 37, p. 4645Yang, S., Carlson, K., (2004) Water Res, 38, p. 3155Castiglioni, S., Fanelli, R., Calamari, D., Bagnati, R., Zuccato, E., (2004) Regulatory Toxicology, and Pharmacology, 39, p. 25Ashton, D., Hilton, M., Thomas, K.V., (2004) Sci. Total Environ, 333, p. 167Thomas, K.V., Hilton, M.J., (2004) Mar. Pollut. Bull, 49, p. 436Hilton, M.J., Thomas, K.V., (2003) J. Chromatogr. A, 1015, p. 129Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R., (2000) Research Letters, 355, p. 1789(2006) FAO/WHO Expert Committee on Food AdditivesEvaluation of Certain Veterinary Drug Residues in Food: Sixty-Sixth Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series no. 939, , WHO Joint(2000) Environmental Impact Assessments (EIAs) for Veterinary Medical Products (VMPS): Phase I, , http://www.vichsec.org/pdf/2000/Gl06_st7.pdf, VICH, acessada em Novembro 2010(2004) Guideline on Environmental Impact Assessment for Veterinary Medical Products - Phase II, , http://www.ema.europa.eu/docs/en_GB/document_library/ Scientific_guideline/2009/10/WC500004393.pdf, VICH, acessada em Novembro 2010(2008) Guideline on Environmental Impact Assessment for Veterinary Medical Products in Support of the VICH Guidelines GL6 and GL38, , http://www.ema.europa.eu/docs/en_GB/document_library/ Scientific_guideline/2009/10/WC500004386.pdf, EMEA, acessada em Novembro 2010Chesworth, W., (2008) Encyclopedia of Soil Chemistry, , Springer:, DordrechtDrillia, P., Stamatelatou, K., Lyberatos, G., (2005) Chemosphere, 60, p. 1034Sassman, S.A., Lee, L.S., (2005) Environ. Sci. Technol, 39, p. 7452Pils, J.R.V., Laird, D.A., (2007) Environ. Sci. Technol, 41, p. 1928Boxall, A.B.A., Blackwell, P., Cavallo, R., Kay, P., Tolls, J., (2002) Toxicol, Lett, 131, p. 19Yeager, R.L., Halley, B.A., (1990) J. Agric. Food Chem, 38, p. 883Williams, C.F., Adamsen, F.J., (2006) J. Environ. Qual, 35, p. 1779Vasudevan, D., Bruland, G.L., Torrance, B.S., Upchurch, V.G., Mackay, A.A., (2009) Geoderma, 151, p. 68Nowara, A., Burhenne, J., Spiteller, M., (1997) J. Agric. Food Chem, 45, p. 1459Rabølle, M., Spliid, N.H., (2000) Chemosphere, 40, p. 715Jie, Z., Zhaojun, L., Gaofei, G., Wanchun, S., Yongchao, L., Laosheng, W., (2009) J. Environ. Sci, 21, p. 632Kulshrestha, P., Giese, R.F., Aga, D.S., (2004) Environ. Sci. Technol, 38, p. 4097Figueroa, R.A., Mackay, A.A., (2005) Environ. Sci. Technol, 39, p. 6664Accinelli, C., Koskinen, W.C., Becker, J.M., Sadowsky, M.J., (2007) J. Agric. Food Chem, 55, p. 2677Thiele-Bruhn, S., Seibicke, T., Schulten, H.R., Leinweber, P., (2004) J. Environ. Qual, 33, p. 1331Thiele, S., (2000) J. Plant Nutr. Soil Sci, 163, p. 589Tolls, J., (2001) Environ. Sci. Technol, 35, p. 3397Andreu, V., Vazquez-Roig, P., Blasco, C., Picó, Y., (2009) Anal. Bioanal. Chem, 394, p. 1329García-Galán, M.J., Díaz-Cruz, M.S., Barceló, D., (2009) Trends Anal, Chem, 28, p. 804Figueroa, R.A., Leonard, A., Mackay, A.A., (2004) Environ. Sci. Technol, 38, p. 476(2000) OECD Guidelines for the Testing of Chemicals. Section 1: Physical-Chemical Properties. Test no 106: Adsorption - Desorption Using a Batch Equilibrium Method, , OECD, Organization for the Economic Cooperation and Development(2004) Section 3: Degradation and Accumulation. Test no 312: Leaching in Soil Columns, Organization for the Economic Cooperation and Development, , OECD, OECD Guidelines for the Testing of ChemicalsCarmosini, N., Lee, L.S., (2009) Chemosphere, 77, p. 813Travis, C.C., Etnier, E.L., (1981) J. Environ. Qual, 10, p. 8(2000) Series on Testing and Assessment no 22. Guidance Document for the Performance of Out-Door Monolith Lysimeter Studies, , OECD, Organization for the Economic Cooperation and DevelopmentKay, P., Blackwell, P.A., Boxall, A.B.A., (2005) Environ. Pollut, 134, p. 333Blackwell, P.A., Kay, P., Ashauer, R., Boxall, A.B.A., (2009) Chemosphere, 75, p. 13Kreuzig, R., Höltge, S., Brunotte, J., Berenzen, N., Wogram, J., Schulz, R., (2005) Environ. Toxicol. Chem, 24, p. 777Ribeiro, M.L., Lourencetti, C., Pereira, S.Y., De Marchi, M.R.R., (2007) Quim. Nova, 30, p. 688Wehrhan, A., Kasteel, R., Simunek, J., Groeneweg, J., Vereecken, H., (2007) J. Contam. Hydrol., 89, p. 107Blackwell, P.A., Kay, P., Boxall, A.B.A., (2007) Chemosphere, 67, p. 292Kay, P., Blackwell, P.A., Boxall, A.B.A., (2005) Chemosphere, 60, p. 497Kreuzig, R., Höltge, S., (2005) Environ. Toxicol. Chem, 24, p. 771Halling-Sørensen, B., Sengeløv, G., Tjørnelund, J., (2002) Arch. Environ. Contam. Toxicol, 42, p. 263Renner, R., (2002) Environ. Sci. Technol, 36, pp. 194AArikan, O., Mulbry, W., Ingram, D., Millner, P., (2009) Bioresour. Technol, 100, p. 4447De Liguoro, M., Cibin, V., Capolongo, F., Halling-Sørensen, B., Montesissa, C., (2003) Chemosphere, 52, p. 203Kusari, S., Prabhakaran, D., Lamshöft, M., Spiteller, M., (2009) Environ. Pollut, 157, p. 2722Arikan, O.A., Mulbry, W., Rice, C., (2009) J. Hazard. Mater, 164, p. 483Arikan, O.A., Sikora, L.J., Mulbry, W., Khan, S.U., Foster, G.D., (2007) Bioresour. Technol, 98, p. 169Arikan, O.A., Sikora, L.J., Mulbry, W., Khan, S.U., Rice, C., Foster, G.D., (2006) Process Biochem, 41, p. 1637Kühne, M., Ihnen, D., Möller, G., Agthe, O., (2000) J. Veterinary Medicine A, 47, p. 379Wang, Q., Yates, S.R., (2008) J. Agric. Food Chem, 56, p. 1683Nicholson, F.A., Groves, S.J., Chambers, B.J., (2005) Bioresour. Technol, 96, p. 135(2002) OECD Guidelines for the Testing of Chemicals. Test no 307: Aerobic and Anaerobic Transformation in Soil, , OECD, Organization for the Economic Cooperation and DevelopmentSøeborg, T., Ingerslev, F., Halling-Sørensen, B., (2004) Chemosphere, 57, p. 1515Lai, H.T., Lin, J.J., (2009) Chemosphere, 75, p. 462Schlüsener, M.P., Bester, K., (2006) Environ. Pollut, 143, p. 565Yang, J.F., Ying, G.G., Zhou, L.J., Liu, S., Zhao, J.L., (2009) Environ. Pollut, 157, p. 2704Schmitt, H., Stoob, K., Hamscher, G., Smit, E., Seinen, W., (2006) Microbial Ecology, 51, p. 267Kim, S.C., Carlson, K., (2007) Anal. Bioanal. Chem, 387, p. 130

    Gaseous Mercury Emissions From Soil Following Forest Loss And Land Use Changes: Field Experiments In The United States And Brazil

    No full text
    Forest ecosystems are a sink of atmospheric mercury, trapping the metal in the canopy, and storing it in the forest floor after litter fall. Fire liberates a portion of this mercury; however, little is known about the long-term release of mercury post deforestation. We conducted two large-scale experiments to study this phenomenon. In upstate New York, gaseous mercury emissions from soil were monitored continually using a Teflon dynamic surface flux chamber for two-weeks before and after cutting of the canopy on the edge of a deciduous forest. In Brazil, gaseous mercury emissions from soil were monitored in an intact Ombrophilous Open forest and an adjacent field site both before and after the field site was cleared by burning. In the intact forest, gaseous mercury emissions from soil averaged-0.73±1.84ngm-2h-1 (24-h monitoring) at the New York site, and 0.33±0.09ngm-2h-1 (daytime-only) at the Brazil site. After deforestation, gaseous mercury emissions from soil averaged 9.13±2.08ngm-2h-1 in New York and 21.2±0.35ngm-2h-1 at the Brazil site prior to burning. Gaseous mercury emissions averaged 74.9±0.73ngm-2h-1 after burning of the cut forest in Brazil. Extrapolating our data, measured over several weeks to months, to a full year period, deforested soil is estimated to release an additional 2.30gha-1yr-1 of gaseous mercury to the atmosphere in the Brazilian experiment and 0.41gha-1yr-1 in the New York experiment. In Brazil, this represents an additional 50% of the mercury load released during the fire itself. © 2014 The Authors.96423429Almeida, M.D., Lacerda, L.D., Bastos, W.R., Herrmann, J.C., Mercury loss from soils following conversion from forest to pasture in RondÔnia, Western Amazon, Brazil (2005) Environ. Pollut., 137 (2), pp. 179-186Bahlmann, E., Ebinghaus, R., Ruck, W., Development and application of a laboratory flux measurement system (LFMS) for the investigation of the kinetics of mercury emissions from soils (2006) J.Environ. Manag., 81 (2), pp. 114-125Carpi, A., Frei, A., Cocris, D., McCloskey, R., Contreras, E., Ferguson, K., Analytical artifacts produced by a polycarbonate chamber compared to a teflon chamber for measuring surface mercury fluxes (2007) Anal. Bioanal. Chem., 388 (2), pp. 361-365Carpi, A., Lindberg, S.E., Sunlight-mediated emission of elemental mercury from soil amended with municipal sewage sludge (1997) Environ. Sci. Technol., 31 (7), pp. 2085-2091Carpi, A., Lindberg, S.E., Application of a teflon(TM) dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil (1998) Atmos. Environ., 32 (5), pp. 873-882Choi, H.D., Holsen, T.M., Gaseous mercury fluxes from the forest floor of the Adirondacks (2009) Environ. Pollut., 157 (2), pp. 592-600Comte, I., Lucotte, M., Davidson, R., Reis de Carvalho, C., Assis Oliveira, F., Rousseau, G., Impacts of land uses on mercury retention in long-time cultivated soils, Brazilian Amazon (2013) Water Air Soil Pollut., 224 (4), pp. 1-14Friedli, H.R., Arellano, A.F., Cinnirella, S., Pirrone, N., Initial estimates of mercury emissions to the atmosphere from global biomass burning (2009) Environ. Sci. Technol., 43 (10), pp. 3507-3513Friedli, H.R., Radke, L.F., Lu, J.Y., Banic, C.M., Leaitch, W.R., MacPherson, J.I., Mercury emissions from burning of biomass from temperate North American forests: laboratory and airborne measurements (2003) Atmos. Environ., 37 (2), pp. 253-267Friedli, H.R., Radkel, L.F., Luz, J.Y., (2001) Mercury in Smoke from Biomass FiresGustin, M.S., Stamenkovic, J., Effect of watering and soil moisture on mercury emissions from soils (2005) Biogeochemistry, 76 (2), pp. 215-232Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Townshend, J.R.G., High-resolution global maps of 21st-century forest cover change (2013) Science, 342 (6160), pp. 850-853Lacerda, L.D., de Souza, M., Ribeiro, M.G., The effects of land use change on mercury distribution in soils of Alta Floresta, Southern Amazon (2004) Environ. Pollut., 129 (2), pp. 247-255Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Seigneur, C., Asynthesis of progress and uncertainties in attributing the sources of mercury in deposition (2007) AMBIO J. Hum. Environ., 36 (1), pp. 19-33Lindberg, S.E., Meyers, T.P., Development of an automated micrometeorological method for measuring the emission of mercury vapor from wetland vegetation (2001) Wetl. Ecol. Manag., 9 (4), pp. 333-347Lindberg, S.E., Price, J.L., Airborne emissions of mercury from municipal landfill operations: a short-term measurement study in Florida (1999) J.Air Waste Manag. Assoc., 49 (5), pp. 520-532Lindberg, S.E., Zhang, H., Gustin, M., Vette, A., Marsik, F., Owens, J., Fitzgerald, C., Increases in mercury emissions from desert soils in response to rainfall and irrigation (1999) J.Geophys. Res., 104 (D17), p. 21879Lindberg, S.E., Zhang, H., Vette, A.F., Gustin, M.S., Barnett, M.O., Kuiken, T., Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils: part 2 - effect of flushing flow rate and verification of a two-resistance exchange interface simulation model (2002) Atmos. Environ., 36 (5), pp. 847-859Magarelli, G., Fostier, A., Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon (2005) Atmos. Environ., 39 (39), pp. 7518-7528Mauclair, C., Layshock, J., Carpi, A., Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces (2008) Appl. Geochem., 23 (3), pp. 594-601Melendez-Perez, J.J., Fostier, A.H., Santos, J.C., Carvalho, J.A., Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest, Atmos (2014) Environ., 96, pp. 415-422Moore, C., Carpi, A., Mechanisms of the emission of mercury from soil: role of UV radiation (2005) J.Geophys. Res. Atmos., 110 (D24), p. 9. , doi:D24302Salimon, C.I., Wadt, P.G.S., de Souza Alves, S., Decrease in carbon stocks in an oxisol due to land use and cover change in southwestern Amazon (2009) Ambiente Água Interdiscip. J. Appl. Sci., 4 (2), pp. 57-65Santos, H.G., Jacomine, P.K.T., Anjos, L.H.C., Oliveira, V.A., Oliveira, J.B., Coelho, M.R., Cunha, T.J.F., (2006) Sistema brasileiro de classificação de solosSiegel, S.M., Siegel, B.Z., Temperature determinants of plant-soil-air mercury relationships (1988) Water Air Soil Pollut., 40 (3), pp. 443-448Sigler, J., Lee, X., Munger, W., Emission and long-range transport of gaseous mercury from a large-scale Canadian boreal forest fire (2003) Environ. Sci. Technol., 37 (19), pp. 4343-4347Song, X., Van Heyst, B., Volatilization of mercury from soils in response to simulated precipitation (2005) Atmos. Environ., 39 (39), pp. 7494-7505Turetsky, M.R., Harden, J.W., Friedli, H.R., Flannigan, M., Payne, N., Crock, J., Radke, L., Wildfires threaten mercury stocks in northern soils (2006) Geophys. Res. Lett., 33 (16), p. 16403(2011) Soil Report for Orange County, , M 7, USDA Natural Resources Conservation Service, U.S. Department of Agriculture, New York, N.R.C. Service (Ed.)Veiga, M., Meech, J., Oñate, N., Mercury pollution from deforestation (1994) Nature, 368 (6474), pp. 816-817(2013) Average Weather for New York, USA, , http://weatherspark.com/averages/31081/New-York-United-States, WeatherSpark Retrieved February 22, 2013, from:(2013) Average Weather for Rio Branco, Brazil, , http://weatherspark.com/averages/33477/Rio-Branco-Acre-Brazil, WeatherSpark Retrieved January 18, 2013, from:Xiao, Z.F., Munthe, J., Schroeder, W.H., Lindqvist, O., Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden (1991) Tellus B, 43 (3), pp. 267-279Xin, M., Gustin, M., Johnson, D., Laboratory investigation of the potential for re-emission of atmospherically derived Hg from soils (2007) Environ. Sci. Technol., 41 (14), pp. 4946-4951Zhang, H., Lindberg, S.E., Barnett, M.O., Vette, A.F., Gustin, M.S., Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils. Part 1: simulation of gaseous mercury emissions from soils using a two-resistance exchange interface model (2002) Atmos. Environ., 36 (5), pp. 835-84

    Soil And Biomass Mercury Emissions During A Prescribed Fire In The Amazonian Rain Forest

    No full text
    Mercury stored in forests can be volatilized to the atmosphere during fires. Many factors influence this process such as mercury concentration, vegetation loading and the soil temperature reached during the fire. We quantified mercury emissions from biomass and soil during a prescribed fire in Brazil using the difference in mercury burden in vegetation and soil before and after burning, and data were critically compared with those previously obtained in a similar experiment in another part of the Amazonia. The calculated mercury emission factor was 4.1±1.4gHgha-1, with the main part (78%) originating from litterfall and O-horizon, and only 14% associated with live biomass. When considering the fuel burned loading, the emission factor ranged from 40 to 53μgHgkg-1. Data were also obtained on soil temperature profile and on Hg speciation in soil in an effort to relate these parameters to Hg emissions. © 2014 Elsevier Ltd.96415422(2014) Goverment of Acre State, , http://www.seiam.ac.gov.br, AcreAgee, J.K., (1973) Prescribed Fire Effects on Physical and Hydrologic Properties of Mixed-Conifer Forest Floor and Soil, , Report 143, Univ. California Resources Center, Davis, CAAlmeida, M.D., Lacerda, L.D., Bastos, W.R., Herrmann, J.C., Mercury loss from soils following conversion from forest to pasture in RondÔnia, Western Amazon, Brazil (2005) Environ. Pollut., 137, pp. 179-186Arocena, J.M., Opio, C., Prescribed fire-induced changes in properties of sub-boreal forest soils (2003) Geoderma, 113, pp. 1-16Brabo, E.S., Angélica, R.S., Silva, A.P., Faial, K.R.F., Mascarenhas, A.F.S., Santos, E.C.O., Jesus, I.M., Loureiro, E.C.B., Assessment of mercury levels in soils, waters, bottom sediments and fishes of acre state in Brazilian Amazon (2003) Water Air Soil Pollut., 147, pp. 61-77Bradstock, R.A., Auld, T.D., Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia (1995) J.Appl. Ecol., 32, pp. 76-84Browder, J.O., Pedlowski, M.A., Summers, P.M., Land use patterns in the Brazilian Amazon: comparative farm-level evidence from RondÔnia (2004) Hum. Ecol., 32, pp. 197-224Carpi, A., Fostier, A.H., Orta, O.R., dos Santos, J.C., Gittings, M., Gaseous mercury emissions from soil following forest loss and land use changes: field experiments in the United States and Brazil (2014) Atmos. Environ., 96, pp. 423-429Carvalho, J.A., Costa, F.S., Gurgel Veras, C.A., Sandberg, D.V., Alvarado, E.C., Gielow, R., Serra, A.M., Santos, J.C., Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil (2001) J.Geophys. Res. D Atmos., 106, pp. 17877-17887Carvalho, J.A., Gurgel Veras, C.A., Alvarado, E.C., Sandberg, D.V., Leite, S.J., Gielow, R., Rabelo, E.R.C., Santos, J.C., Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire (2010) Int. J. Wildland Fire, 19, pp. 795-799Carvalho, J.A., Higuchi, N., Araújo, T.M., Santos, J.C., Combustion completeness in a rainforest clearing experiment in Manaus, Brazil (1998) J.Geophys. Res. D Atmos., 103, pp. 13195-13199Chandler, C., Cheney, P., Thomas, P., Trabaud, L., Williams, D., Forest Fire Behavior and Effects (1983) Fire in Forestry, 1. , Wiley, New YorkChristian, T.J., Yokelson, R.J., Carvalho, J.A., Griffith, D.W.T., Alvarado, E.C., Santos, J.C., Neto, T.G.S., Hao, W.M., The tropical forest and fire emissions experiment: trace gases emitted by smoldering logs and dung from deforestation and pasture fires in Brazil (2007) J.Geophys. Res. D Atmos., 112Christofaro, C., Leão, M.M., Tratamento de dados censurados em estudos ambientais (2014) Quim. Nova, 37 (104), p. 110Comte, I., Lucotte, M., Davidson, R., Reis De Carvalho, C.J., De Assis Oliveira, F., Rousseau, G.X., Impacts of land uses on mercury retention in long-time cultivated soils, brazilian amazon (2013) Water Air Soil Pollut., 224da Silva, G.S., Bisinoti, M.C., Fadini, P.S., Magarelli, G., Jardim, W.F., Fostier, A.H., Major aspects of the mercury cycle in the Negro river basin, Amazon (2009) J.Braz. Chem. Soc., 20, pp. 1127-1134Debano, L.F., The role of fire and soil heating on water repellency in Wildland environments: a review (2000) J.Hydrol., pp. 195-206Do Valle, C.M., Santana, G.P., Augusti, R., Egreja Filho, F.B., Windmöller, C.C., Speciation and quantification of mercury in Oxisol, Ultisol, and Spodosol from Amazon (Manaus, Brazil) (2005) Chemosphere, 58, pp. 779-792do Valle, C.M., Santana, G.P., Windmöller, C.C., Mercury conversion processes in Amazon soils evaluated by thermodesorption analysis (2006) Chemosphere, 65, pp. 1966-1975Engle, M.A., Sexauer Gustin, M., Johnson, D.W., Murphy, J.F., Miller, W.W., Walker, R.F., Wright, J., Markee, M., Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire (2006) Sci. Total Environ., 367, pp. 222-233Farella, N., Davidson, R., Lucotte, M., Daigle, S., Nutrient and mercury variations in soils from family farms of the Tapajós region (Brazilian Amazon): recommendations for better farming (2007) Agric. Ecosyst. Environ., 120, pp. 449-462Farella, N., Lucotte, M., Davidson, R., Daigle, S., Mercury release from deforested soils triggered by base cation enrichment (2006) Sci. Total Environ., 368, pp. 19-29Fay, L., Gustin, M., Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment (2007) Water Air Soil Pollut., 181, pp. 373-384Fostier, A.H., Forti, M.C., Guimarães, J.R.D., Melfi, A.J., Boulet, R., Espirito Santo, C.M., Krug, F.J., Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapa State, Brazil) (2000) Sci. Total Environ., 260, pp. 201-211Frescholtz, T.F., Gustin, M.S., Schorran, D.E., Fernandez, G.C.J., Assessing the source of mercury in foliar tissue of quaking aspen (2003) Environ. Toxicol. Chem., 22, pp. 2114-2119Friedli, H.R., Arellano, A.F., Cinnirella, S., Pirrone, N., Initial estimates of mercury emissions to the atmosphere from global biomass burning (2009) Environ. Sci. Technol., 43, pp. 3507-3513Friedli, H.R., Radke, L.F., Lu, J.Y., Mercury in smoke from biomass fires (2001) Geophys. Res. Lett., 28, pp. 3223-3226González-Pérez, J.A., González-Vila, F.J., Almendros, G., Knicker, H., The effect of fire on soil organic matter - a review (2004) Environ. Int., 30, pp. 855-870Grigal, D.F., Mercury sequestration in forests and peatlands: a review (2003) J.Environ. Qual., 32, pp. 393-405Harden, J.W., Neff, J.C., Sandberg, D.V., Turetsky, M.R., Ottmar, R., Gleixner, G., Fries, T.L., Manies, K.L., Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999 (2004) Glob. Biogeochem. Cycles, 18, pp. 3011-3013. , GB3014Hodnett, M.G., Pimentel Da Silva, L., Da Rocha, H.R., Cruz Senna, R., Seasonal soil water storage changes beneath central Amazonian rainforest and pasture (1995) J.Hydrol., 170, pp. 233-254Holmes, C.D., Jacob, D.J., Corbitt, E.S., Mao, J., Yang, X., Talbot, R., Slemr, F., Global atmospheric model for mercury including oxidation by bromine atoms (2010) Atmos. Chem. Phys., 10, pp. 12037-12057(2014) Projeto Prodes monitoramento da floresta amazonica por satélite, , http://www.obt.inpe.br/prodes/index.php, INPELacerda, L., Amazon mercury emissions (1995) Nature, 374, pp. 20-21Lin, C.J., Pehkonen, S.O., The chemistry of atmospheric mercury: a review (1999) Atmos. Environ., 33, pp. 2067-2079Magarelli, G., Fostier, A.H., Influence of deforestation on the mercury air/soil exchange in the Negro River Basin, Amazon (2005) Atmos. Environ., 39, pp. 7518-7528Mailman, M., Bodaly, R.A., Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in Northwestern Ontario (2005) Environ. Pollut., 138, pp. 161-166Mainville, N., Webb, J., Lucotte, M., Davidson, R., Betancourt, O., Cueva, E., Mergler, D., Decrease of soil fertility and release of mercury following deforestation in the Andean Amazon, Napo River Valley, Ecuador (2006) Sci. Total Environ., 368, pp. 88-98Mataix-Solera, J., (1999) Alteraciones físicas, químicas y biológicas en suelos afectados por incendios forestales, , (Ph.D. thesis), Universidad de AlicanteMataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., Fire effects on soil aggregation: a review (2011) Earth Sci. Rev., 109, pp. 44-60Melendez-Perez, J.J., Fostier, A.H., Assessment of direct Mercury Analyzer® to quantify mercury in soils and leaf samples (2013) J.Braz. Chem. Soc., 24, pp. 1880-1886Mélières, M.-A., Pourchet, M., Charles-Dominique, P., Gaucher, P., Mercury in canopy leaves of French Guiana in remote areas (2003) Sci. Total Environ., 311, pp. 261-267Mesquita, C.C., (1996) The Climate of the State of Acre, p. 57. , Rio Branco: SECTMA, (in Portuguese)Michelazzo, P.A., Fostier, A.H., Magarelli, G., Santos, J.C., Andrade de Carvalho, J., Mercury emissions from forest burning in southern Amazon (2010) Geophys. Res. Lett., 37Miller, J.N., Miller, J.C., (2000) Chemometrics for Analytical Chemistry, , Pearson, EdinburghFire effects on soils (2004) Southwest Hydrol., pp. 18-19. , NearyNeary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., Fire effects on belowground sustainability: a review and synthesis (1999) For. Ecol. Manag., 122, pp. 51-71Neto, T.G., Carvalho, J.A., Cortez, E.V., Azevedo, R.G., Oliveira, R.A., Fidalgo, W.R.R., Santos, J.C., Laboratory evaluation of Amazon forest biomass burning emissions (2011) Atmos. Environ., 45, pp. 7455-7461Neto, T.G., Carvalho, J.A., Veras, C.A.G., Alvarado, E.C., Gielow, R., Lincoln, E.N., Christian, T.J., Santos, J.C., Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire (2009) Atmos. Environ., 43, pp. 438-446Obrist, D., Johnson, D.W., Edmonds, R.L., Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests (2012) J.Plant Nutr. Soil Sci., 175, pp. 68-77Patry, C., Davidson, R., Lucotte, M., Béliveau, A., Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon (2013) Sci. Total Environ., 458-460, pp. 228-237Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Telmer, K., Global mercury emissions to the atmosphere from anthropogenic and natural sources (2010) Atmos. Chem. Phys., 10, pp. 5951-5964Rea, A.W., Lindberg, S.E., Scherbatskoy, T., Keeler, G.J., Mercury accumulation in foliage over time in two northern mixed-hardwood forests (2002) Water Air Soil Pollut., 133, pp. 49-67Rezende, P.S., Moura, P.A.S., Durão, W.A., Nascentes, C.C., Windmöller, C.C., Costa, L.M., Arsenic and mercury mobility in Brazilian sediments from the São Francisco River Basin (2011) J.Braz. Chem. Soc., 22, pp. 910-918Roulet, M., Lucotte, M., Farella, N., Serique, G., Coelho, H., Sousa Passos, C.J., Da Silva, E.J., Amorim, M., Effects of recent human colonization on the presence of mercury in Amazonian ecosystems (1999) Water Air Soil Pollut., 112, pp. 297-313Rundel, P.W., Impact of fire on nutrient cycles in mediterranean-type ecosystems with reference to chaparral (1983) Mediterranean-Type Ecosystems: the Role of Nutrients, pp. 192-2207. , Springer-Verlag, New York, USA, F.J. Kruger, D.T. Mitchell, J.U.M. Jarvis (Eds.)Sandberg, D.V., Ottmar, R.D., (1983) Slash Burning and Fuel Consumption in the Douglas-fir Subregion. Seventh Conference on Fire and Forest Meteorology, pp. 90-93. , Colorado, Fort CollinsSanford, R.F., Pierson, C.T., Crovelli, R.A., An objective replacement method for censored geochemical data (1993) Math. Geol., 25, pp. 59-80(2006) Sistema Brasileiro de Classificação de Solos, , Embrapa Solos, SiBCSSilveira, J.M., Barlow, J., Krusche, A.V., Orwin, K.H., Balch, J.K., Moutinho, P., Effects of experimental fires on litter decomposition in a seasonally dry Amazonian forest (2009) J.Trop. Ecol., 25, pp. 657-663Six, J., Feller, C., Denef, K., Ogle, S.M., De Moraes Sa, J.C., Albrecht, A., Soil organic matter, biota and aggregation in temperate and tropical soils - effects of no-tillage (2002) Agronomie, 22, pp. 755-775Sydenstricker-Neto, J., Population and deforestation in the Brazilian Amazon: a mediating perspective and a mixed-method analysis (2012) Popul. Environ., 34, pp. 86-112Teixeira, D.C., Montezuma, R.C., Oliveira, R.R., Silva-Filho, E.V., Litterfall mercury deposition in Atlantic forest ecosystem from SE - Brazil (2012) Environ. Pollut., 164, pp. 11-15(2013) Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport, , UNEP Chemicals Branch, Geneva, Switzerland, UNEPVeiga, M.M., Meech, J.A., Onate, N., Mercury pollution from deforestation (1994) Nature, 368, pp. 816-817Wiedinmyer, C., Friedli, H., Mercury emission estimates from fires: an initial inventory for the United States (2007) Environ. Sci. Technol., 41, pp. 8092-809

    Isolamento, fracionamento e atividade anticoagulante de iota-carragenanas da Solieria filiformis Isolation, fractionation and anticoagulant activity of iota-carrageenans from Solieria filiformis

    No full text
    Este estudo teve como objetivo isolar, fracionar e avaliar o potencial anticoagulante de iota-carragenanas (i-CARs) da rodofícea Solieria filiformis, quando obtidas por dois métodos de extração (M I e M II). As i-CARs foram isoladas com papaína bruta em tampão acetato de sódio 0,1M (pH 5,0), contendo cisteína 5mM e EDTA 5mM (M I) ou água (80&deg;C) (M II) e, em seguida, determinada sua composição química de carboidratos totais, sulfato livre (SL) e proteínas contaminantes. As i-CARs foram submetidas à cromatografia de troca iônica (DEAE-celulose) usando um gradiente de cloreto de sódio, sendo avaliado o tempo de tromboplastina parcial ativada (TTPA) e tempo de protrombina das frações obtidas e comparadas à heparina (193UI mg-1). Uma fração anticoagulante também foi submetida ao procedimento de eletroforese em gel de agarose a 0,5%. A diferença no rendimento de i-CARs entre os métodos foi 10,14%. A composição química de SL (29,40%) e o fracionamento, por DEAE-celulose, indicaram o M I mais eficiente na obtenção de i-CARs, comparado ao M II. O TTPA também foi somente alterado para as i-CARs do M I. Contudo, a atividade anticoagulante in vitro de uma fração rica (8,52UI mg-1) foi inferior à da heparina.<br>This study aimed to isolate, fractionate and evaluate the anticoagulant potential of iota-carrageenans (i-CARs) from Solieria filiformis when two extraction methods (M I and M II) were used. i-CARs were isolated with papain in 0.1M sodium acetate (pH 5.0) containing 5mM cystein and 5mM EDTA (M I) or water (80&deg;C) (M II), and then their chemical composition of total carbohydrates, free sulfate (FS) and contaminant proteins were determined. i-CARs were submitted to anion-exchange chromatography (DEAE-cellulose) using a sodium chloride gradient,being evaluated the activated partial thromboplastin time (APTT) and prothrombin time of obtained fractions and compared to heparin (193IU mg-1). A rich fraction of anticoagulant was also submitted to 0.5% agarose gel electrophoresis procedure. The difference of yield between methods was 10.14%. The chemical composition of FS (29.40%) and the fractionation by DEAE-cellulose showed M I more effectiveness in the obtaining of i-CARs compared to M II. The APTT was also modified for i-CARs from M I. However, the in vitro anticoagulant activity of a rich fraction (8.52IU mg-1) was inferior to heparin

    Avaliação da concentração de mercúrio em sedimentos e material particulado no rio Acre, estado do Acre, Brasil Mercury concentration assessment in botton sediments and suspended solids from Acre river, in the State of Acre, Brazil

    No full text
    A avaliação dos teores de mercúrio em sistemas aquáticos sem influência direta de fontes antropogênicas conhecidas não tem sido conduzida com freqüência na região Amazônica. Visando contribuir para esclarecer a ocorrência de valores elevados de Hg em peixes consumidos pela população de Rio Branco - AC, o Instituto Evandro Chagas - IEC, realizou um estudo para quantificar os teores de Hg em sedimentos de fundo e material particulado no rio Acre e alguns afluentes, além da caracterização físico-química das águas entre as cidades de Brasiléia e Assis Brasil. As amostras de sedimentos foram peneiradas na fração < 250 mesh e o material particulado obtido por floculação com Al2SO4 . Uma massa de 250 mg dos materiais foram submetidos a digestão ácida e as determinações de Hg realizadas por Espectrofotometria de Absorção Atômica, com geração de vapor frio. Os parâmetros físico-químicos pH, condutividade elétrica, temperatura e sólidos totais dissolvidos, foram feitos no campo, por métodos potenciométricos. Os teores de Hg nos sedimentos de fundo variaram entre 0,018 e 0,184 mig g-1, com média de 0,054 ± 0,034 mig g-1, enquanto que no material particulado a variação foi de 0,067 a 0,220 mig g-1e média de 0,098 ± 0,037 mig g-1. As águas possuem características levemente ácidas indicadas pelos valores de pH que variaram entre 5,80 - 6,95. A condutividade elétrica variou de 151,60 - 1.151,00 miS cm-1. Os teores de Hg nos materiais analisados encontram-se dentro da faixa dos valores observados para os rios amazônicos "não poluídos". Entretanto, estudos complementares deverão ser implementados para elucidar a origem e os processos de biodisponibilidade do mercúrio.<br>Mercury levels assessment in aquatic systems areas without influences of antropogenic sources have not been well studied in the Amazon region. For the identification of the origin of high values of Hg in fish consumed by population of Rio Branco City - AC, the Evandro Chagas Institute - IEC, studied the mercury levels in sediments, suspended solids and studied also the physical-chemical characterization of waters, in the Acre river and also some in afluents, between Brasiléia and Assis Brasil cities. Bottom sediments samples were sieved to <250 mesh fraction after drying. The suspended solid was obtained by precipitation with Al2SO4. About 250 mg of the material was submitted the acid digestion and the determinations of Hg were made by Could Vapor Atomic Absorption Spectrometry. The physical-chemical parameters pH, electric conductivity, temperature and dissolved total solids, were studied in the field, by potenciometric methods. The Hg levels in bottom sediments range 0,018 and 0,184 mug g-1, mean of 0,054 ± 0,034 mug g-1, while the suspended solids varied between 0,067 and 0,220 mug g-1, average of 0,098 ± 0,037 mug g-1. The waters were slightly acid with pH varying among 5,80 - 6,95 and conductivity electric 151,60 - 1.151,00 muS cm-1. The mercury levels in the analyzed materials was below of standard levels for the non-polluted Amazon rivers. However complementary studies should be developed to elucidate the origin and the processes of mercury biodisponibility
    corecore