21,628 research outputs found

    Properties of nonaqueous electrolytes First quarterly report, 20 Jun. - 19 Sep. 1966

    Get PDF
    Solvent purification and water content determined by gas chromatography for nonaqueous electrolyte

    Properties of nonaqueous electrolytes Quarterly report, 20 Sep. - 19 Dec. 1966

    Get PDF
    Vapor phase chromatographic analysis of dimethyl formamide, and physical properties of electrolytes containing lithium chloride and/or aluminum chlorid

    Properties of nonaqueous electrolytes Quarterly report, 20 Dec. 1966 - 19 Mar. 1967

    Get PDF
    Properties of nonaqueous electrolytes - preparation of electrolytes, nuclear magnetic resonance structural studies, and physical property determination

    Prompt energization of relativistic and highly relativistic electrons during a substorm interval: Van Allen Probes observations

    Get PDF
    Abstract On 17 March 2013, a large magnetic storm significantly depleted the multi-MeV radiation belt. We present multi-instrument observations from the Van Allen Probes spacecraft Radiation Belt Storm Probe A and Radiation Belt Storm Probe B at ~6 Re in the midnight sector magnetosphere and from ground-based ionospheric sensors during a substorm dipolarization followed by rapid reenergization of multi-MeV electrons. A 50% increase in magnetic field magnitude occurred simultaneously with dramatic increases in 100 keV electron fluxes and a 100 times increase in VLF wave intensity. The 100 keV electrons and intense VLF waves provide a seed population and energy source for subsequent radiation belt enhancements. Highly relativistic (\u3e2 MeV) electron fluxes increased immediately at L* ~ 4.5 and 4.5 MeV flux increased \u3e90 times at L* = 4 over 5 h. Although plasmasphere expansion brings the enhanced radiation belt multi-MeV fluxes inside the plasmasphere several hours postsubstorm, we localize their prompt reenergization during the event to regions outside the plasmasphere. Key Points Substorm dynamics are important for highly relativistic electron energization Cold plasma preconditioning is significant for rapid relativistic energization Relativistic / highly relativistic electron energization can occur in \u3c 5 hrs

    The relationship between adiposity, bone density and microarchitecture is maintained in young women irrespective of diabetes status

    Get PDF
    Background: The relationship between bone health and adiposity and how it may be affected in people with chronic metabolic conditions is complex. Methods: 17 women with Type 1 diabetes mellitus (T1DM) and 9 age-matched healthy women with a median age of 22.6 yrs (range, 17.4, 23.8) were studied by 3T-MRI and MR spectroscopy to assess abdominal adiposity, tibial bone microarchitecture and vertebral bone marrow adiposity. Additional measures included DXA-based assessments of total body (TB), femoral neck (FN) and lumbar spine (LS) bone mineral density (BMD) and fat mass (FM). Results: Although women with T1DM had similar BMI and bone marrow adiposity to the controls, they had higher visceral and subcutaneous adiposity on MRI (p<0.05) and total body FM by DXA (p=0.03). Overall, in the whole cohort, a clear inverse association was evident between bone marrow adiposity and BMD at all sites (p<0.05). These associations remained significant after adjusting for age, BMI, FM, and abdominal adiposity. In addition, visceral adiposity, but not subcutaneous adiposity, showed a positive association with bone marrow adiposity (r,0.4, p=0.03), and a negative association with total body BMD (r,0.5, p=0.02). Apparent trabecular separation as assessed by MRI showed an inverse association to total body BMD by DXA (r,–0.4, p=0.04). Conclusion: Irrespective of the presence of an underlying metabolic condition, young women display a negative relationship between MRI-measured bone marrow adiposity and DXA-based assessment of bone mineral density. Furthermore, an association between bone marrow adiposity and visceral adiposity supports the notion of a common origin of these two fat depots

    Implicit Simulations using Messaging Protocols

    Full text link
    A novel algorithm for performing parallel, distributed computer simulations on the Internet using IP control messages is introduced. The algorithm employs carefully constructed ICMP packets which enable the required computations to be completed as part of the standard IP communication protocol. After providing a detailed description of the algorithm, experimental applications in the areas of stochastic neural networks and deterministic cellular automata are discussed. As an example of the algorithms potential power, a simulation of a deterministic cellular automaton involving 10^5 Internet connected devices was performed.Comment: 14 pages, 3 figure

    Properties of nonaqueous electrolytes Quarterly report, 20 Jun. - 19 Sep. 1967

    Get PDF
    Electrolyte preparation, and physical property and nuclear magnetic resonance structural studies of nonaqueous electrolyte
    • …
    corecore