466 research outputs found

    The effect of sex-allocation biasing on the evolution of worker policing in hymenopteran societies

    Get PDF
    Mutual policing is thought to be important in conflict suppression at all levels of biological organization. In hymenopteran societies (bees, ants, and wasps), multiple mating by queens favors mutual policing of male production among workers (worker policing). However, worker policing of male production is proving to be more widespread than predicted by relatedness patterns, occurring in societies headed by single-mated queens in which, paradoxically, workers are more related to the workers' sons that they kill than the queen's sons that they spare. Here we develop an inclusive-fitness model to show that a second reproductive conflict, the conflict over sex allocation, can explain the evolution of worker policing contrary to relatedness predictions. Among ants, and probably other social Hymenoptera, workers kill males to favor their more related sisters. Importantly, males are killed at the larval stage, presumably because workers cannot determine the sex of queen-laid eggs. Sex-allocation biasing favors worker policing because policing removes some males (the workers' sons) at low cost at the egg stage rather than at higher cost at the larval stage. Our model reveals an important interaction between two reproductive conflicts in which the presence of one conflict (sex allocation) favors the suppression of the other (male production by workers)

    The effect of sex-allocation biasing on the evolution of worker policing in hymenopteran societies

    Get PDF
    Mutual policing is thought to be important in conflict suppression at all levels of biological organization. In hymenopteran societies (bees, ants, and wasps), multiple mating by queens favors mutual policing of male production among workers (worker policing). However, worker policing of male production is proving to be more widespread than predicted by relatedness patterns, occurring in societies headed by single-mated queens in which, paradoxically, workers are more related to the workers' sons that they kill than the queen's sons that they spare. Here we develop an inclusive-fitness model to show that a second reproductive conflict, the conflict over sex allocation, can explain the evolution of worker policing contrary to relatedness predictions. Among ants, and probably other social Hymenoptera, workers kill males to favor their more related sisters. Importantly, males are killed at the larval stage, presumably because workers cannot determine the sex of queen-laid eggs. Sex-allocation biasing favors worker policing because policing removes some males (the workers' sons) at low cost at the egg stage rather than at higher cost at the larval stage. Our model reveals an important interaction between two reproductive conflicts in which the presence of one conflict (sex allocation) favors the suppression of the other (male production by workers)

    Should children use mobile phones?

    Full text link

    The Evolution of Quorum Sensing as a Mechanism to Infer Kinship.

    Get PDF
    Bacteria regulate many phenotypes via quorum sensing systems. Quorum sensing is typically thought to evolve because the regulated cooperative phenotypes are only beneficial at certain cell densities. However, quorum sensing systems are also threatened by non-cooperative "cheaters" that may exploit quorum-sensing regulated cooperation, which begs the question of how quorum sensing systems are maintained in nature. Here we study the evolution of quorum sensing using an individual-based model that captures the natural ecology and population structuring of microbial communities. We first recapitulate the two existing observations on quorum sensing evolution: density-dependent benefits favor quorum sensing but competition and cheating will destabilize it. We then model quorum sensing in a dense community like a biofilm, which reveals a novel benefit to quorum sensing that is intrinsically evolutionarily stable. In these communities, competing microbial genotypes gradually segregate over time leading to positive correlation between density and genetic similarity between neighboring cells (relatedness). This enables quorum sensing to track genetic relatedness and ensures that costly cooperative traits are only activated once a cell is safely surrounded by clonemates. We hypothesize that under similar natural conditions, the benefits of quorum sensing will not result from an assessment of density but from the ability to infer kinship

    Costs and benefits of provocation in bacterial warfare.

    Get PDF
    Competition in animals involves a wide variety of aggressive behaviors. One of the most sophisticated strategies for a focal actor is to provoke a competitor into uncontrolled aggression toward other competitors. Like animals, bacteria rely on a broad spectrum of molecular weapons, some of which provoke potential rivals by triggering retaliation. While bacterial provocation is well documented, its potential adaptive value has received little attention. Here, we examine the costs and benefits of provocation using mathematical modeling and experiments with <i>Escherichia coli</i> strains encoding colicin toxins. We show that provocation is typically costly in one-to-one encounters because a provoking strain receives a strong reciprocal attack compared with nonprovoking strains. By contrast, provocation can be strongly beneficial in communities including more than two toxin-producing strains, especially when the provoker is shielded from, or resistant to, its opponents' toxins. In these scenarios, we demonstrate that the benefit of provocation derives from a "divide-and-conquer" effect by which aggression-provoking toxin producers force their competitors into increased reciprocal aggression, leading to their cross-elimination. Furthermore, we show that this effect can be mimicked by using antibiotics that promote warfare among strains in a bacterial community, highlighting the potential of provocation as an antimicrobial approach

    Migration and horizontal gene transfer divide microbial genomes into multiple niches.

    Get PDF
    Horizontal gene transfer is central to microbial evolution, because it enables genetic regions to spread horizontally through diverse communities. However, how gene transfer exerts such a strong effect is not understood. Here we develop an eco-evolutionary model and show how genetic transfer, even when rare, can transform the evolution and ecology of microbes. We recapitulate existing models, which suggest that asexual reproduction will overpower horizontal transfer and greatly limit its effects. We then show that allowing immigration completely changes these predictions. With migration, the rates and impacts of horizontal transfer are greatly increased, and transfer is most frequent for loci under positive natural selection. Our analysis explains how ecologically important loci can sweep through competing strains and species. In this way, microbial genomes can evolve to become ecologically diverse where different genomic regions encode for partially overlapping, but distinct, ecologies. Under these conditions ecological species do not exist, because genes, not species, inhabit niches

    Microbial competition in porous environments can select against rapid biofilm growth

    Get PDF
    Microbes often live in dense communities called biofilms where competition between strains and species is fundamental to both evolution and community function. While biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here we use novel microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates we couple a model of flow-biofilm interaction with a game theory analysis. This shows that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live

    Collateral damage: american science and the war on terrorism

    Full text link

    Bacteria solve the problem of crowding by moving slowly

    Get PDF
    Bacteria commonly live attached to surfaces in dense collectives containing billions of cells1. While it is known that motility allows these groups to expand en masse into new territory2,3,4,5, how bacteria collectively move across surfaces under such tightly packed conditions remains poorly understood. Here we combine experiments, cell tracking and individual-based modelling to study the pathogen Pseudomonas aeruginosa as it collectively migrates across surfaces using grappling-hook-like pili3,6,7. We show that the fast-moving cells of a hyperpilated mutant are overtaken and outcompeted by the slower-moving wild type at high cell densities. Using theory developed to study liquid crystals8,9,10,11,12,13, we demonstrate that this effect is mediated by the physics of topological defects, points where cells with different orientations meet one another. Our analyses reveal that when defects with topological charge +1/2 collide with one another, the fast-moving mutant cells rotate to point vertically and become trapped. By moving more slowly, wild-type cells avoid this trapping mechanism and generate collective behaviour that results in faster migration. In this way, the physics of liquid crystals explains how slow bacteria can outcompete faster cells in the race for new territory

    Theory of ac electrokinetic behavior of spheroidal cell suspensions with an intrinsic dispersion

    Full text link
    The dielectric dispersion, dielectrophoretic (DEP) and electrorotational (ER) spectra of spheroidal biological cell suspensions with an intrinsic dispersion in the constituent dielectric constants are investigated. By means of the spectral representation method, we express analytically the characteristic frequencies and dispersion strengths both for the effective dielectric constant and the Clausius-Mossotti factor (CMF). We identify four and six characteristic frequencies for the effective dielectric spectra and CMF respectively, all of them being dependent on the depolarization factor (or the cell shape). The analytical results allow us to examine the effects of the cell shape, the dispersion strength and the intrinsic frequency on the dielectric dispersion, DEP and ER spectra. Furthermore, we include the local-field effects due to the mutual interactions between cells in a dense suspension, and study the dependence of co-field or anti-field dispersion peaks on the volume fractions.Comment: accepted by Phys. Rev.
    corecore