156 research outputs found
Comprehensive Compositional Analysis of Plant Cell Walls (Lignocellulosic biomass) Part I: Lignin
The need for renewable, carbon neutral, and sustainable raw materials for industry and society has become one of the most pressing issues for the 21st century. This has rekindled interest in the use of plant products as industrial raw materials for the production of liquid fuels for transportation1 and other products such as biocomposite materials7. Plant biomass remains one of the greatest untapped reserves on the planet4. It is mostly comprised of cell walls that are composed of energy rich polymers including cellulose, various hemicelluloses (matrix polysaccharides, and the polyphenol lignin6 and thus sometimes termed lignocellulosics. However, plant cell walls have evolved to be recalcitrant to degradation as walls provide tensile strength to cells and the entire plants, ward off pathogens, and allow water to be transported throughout the plant; in the case of trees up to more the 100 m above ground level. Due to the various functions of walls, there is an immense structural diversity within the walls of different plant species and cell types within a single plant4. Hence, depending of what crop species, crop variety, or plant tissue is used for a biorefinery, the processing steps for depolymerization by chemical/enzymatic processes and subsequent fermentation of the various sugars to liquid biofuels need to be adjusted and optimized. This fact underpins the need for a thorough characterization of plant biomass feedstocks. Here we describe a comprehensive analytical methodology that enables the determination of the composition of lignocellulosics and is amenable to a medium to high-throughput analysis. In this first part we focus on the analysis of the polyphenol lignin (Figure 1). The method starts of with preparing destarched cell wall material. The resulting lignocellulosics are then split up to determine its lignin content by acetylbromide solubilization3, and its lignin composition in terms of its syringyl, guaiacyl- and p-hydroxyphenyl units5. The protocol for analyzing the carbohydrates in lignocellulosic biomass including cellulose content and matrix polysaccharide composition is discussed in Part II2
Identification of developmental stage and anatomical fraction contributions to cell wall recalcitrance in switchgrass
Background Heterogeneity within herbaceous biomass can present important challenges for processing feedstocks to cellulosic biofuels. Alterations to cell wall composition and organization during plant growth represent major contributions to heterogeneity within a single species or cultivar. To address this challenge, the focus of this study was to characterize the relationship between composition and properties of the plant cell wall and cell wall response to deconstruction by NaOH pretreatment and enzymatic hydrolysis for anatomical fractions (stem internodes, leaf sheaths, and leaf blades) within switchgrass at various tissue maturities as assessed by differing internode. Results Substantial differences in both cell wall composition and response to deconstruction were observed as a function of anatomical fraction and tissue maturity. Notably, lignin content increased with tissue maturity concurrently with decreasing ferulate content across all three anatomical fractions. Stem internodes exhibited the highest lignin content as well as the lowest hydrolysis yields, which were inversely correlated to lignin content. Confocal microscopy was used to demonstrate that removal of cell wall aromatics (i.e., lignins and hydroxycinnamates) by NaOH pretreatment was non-uniform across diverse cell types. Non-cellulosic polysaccharides were linked to differences in cell wall response to deconstruction in lower lignin fractions. Specifically, leaf sheath and leaf blade were found to have higher contents of substituted glucuronoarabinoxylans and pectic polysaccharides. Glycome profiling demonstrated that xylan and pectic polysaccharide extractability varied with stem internode maturity, with more mature internodes requiring harsher chemical extractions to remove comparable glycan abundances relative to less mature internodes. While enzymatic hydrolysis was performed on extractives-free biomass, extractible sugars (i.e., starch and sucrose) comprised a significant portion of total dry weight particularly in stem internodes, and may provide an opportunity for recovery during processing
The Fragile Fiber1 Kinesin Contributes to Cortical Microtubule-Mediated Trafficking of Cell Wall Components
The cell wall consists of cellulose microfibrils embedded within a matrix of hemicellulose and pectin. Cellulose microfibrils are synthesized at the plasma membrane, whereas matrix polysaccharides are synthesized in the Golgi apparatus and secreted. The trafficking of vesicles containing cell wall components is thought to depend on actin-myosin. Here, we implicate microtubules in this process through studies of the kinesin-4 family member, Fragile Fiber1 (FRA1). In an fra1-5 knockout mutant, the expansion rate of the inflorescence stem is halved compared with the wild type along with the thickness of both primary and secondary cell walls. Nevertheless, cell walls in fra1-5 have an essentially unaltered composition and ultrastructure. A functional triple green fluorescent protein-tagged FRA1 fusion protein moves processively along cortical microtubules, and its abundance and motile density correlate with growth rate. Motility of FRA1 and cellulose synthase complexes is independent, indicating that FRA1 is not directly involved in cellulose biosynthesis; however, the secretion rate of fucose-alkyne-labeled pectin is greatly decreased in fra1-5, and the mutant has Golgi bodies with fewer cisternae and enlarged vesicles. Based on our results, we propose that FRA1 contributes to cell wall production by transporting Golgi-derived vesicles along cortical microtubules for secretion
The 2016 Colorado Health Report Card: Celebrating a Decade of Data
This report is an annual update examining the current status of health, health care and health coverage in Colorado. The Health Report Card provides a benchmark for measuring progress on some of the state's most pressing health issues across 38 key health indicators and through five life stages. This year, we celebrate the Health Report Card's 10th anniversary and unveil 10-year trends on where we've made progress and challenges we continue to face. Learn how a decade of data can inform policy solutions to help make Colorado the healthiest state in the nation
Different routes for conifer- and sinapaldehyde and higher saccharification upon deficiency in the dehydrogenase CAD1
In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula 3 Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10% reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S'(8-8) S' and lignin or converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising strategy for improving lignocellulosic biomass for the sugar platform industry
- …