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In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition
for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime
target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula 3 Populus alba) by specifically
down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which
resulted in only 5% residual CAD1 transcript abundance. These transgenic lines showed no biomass penalty despite a 10%
reduction in Klason lignin content and severe shifts in lignin composition. Nuclear magnetic resonance spectroscopy and
thioacidolysis revealed a strong increase (up to 20-fold) in sinapaldehyde incorporation into lignin, whereas coniferaldehyde
was not increased markedly. Accordingly, ultra-high-performance liquid chromatography-mass spectrometry-based phenolic
profiling revealed a more than 24,000-fold accumulation of a newly identified compound made from 8-8 coupling of two
sinapaldehyde radicals. However, no additional cinnamaldehyde coupling products could be detected in the CAD1-deficient
poplars. Instead, the transgenic lines accumulated a range of hydroxycinnamate-derived metabolites, of which the most
prominent accumulation (over 8,500-fold) was observed for a compound that was identified by purification and nuclear
magnetic resonance as syringyl lactic acid hexoside. Our data suggest that, upon down-regulation of CAD1, coniferaldehyde
is converted into ferulic acid and derivatives, whereas sinapaldehyde is either oxidatively coupled into S9(8-8)S9 and lignin or
converted to sinapic acid and derivatives. The most prominent sink of the increased flux to hydroxycinnamates is syringyl lactic
acid hexoside. Furthermore, low-extent saccharification assays, under different pretreatment conditions, showed strongly
increased glucose (up to +81%) and xylose (up to +153%) release, suggesting that down-regulating CAD1 is a promising
strategy for improving lignocellulosic biomass for the sugar platform industry.

The depletion of fossil feedstock and the urgent need
to decrease greenhouse gas emissions demand the use
of renewable and sustainable energy sources (USEIA,
2013; Vanholme et al., 2013a). Second-generation bio-
fuels are produced from nonedible biomass, such as
lignocellulosic material, and are favored over first-
generation biofuels that are made from feedstock that
can also serve as food and feed, such as maize (Zea
mays) grain (Yuan et al., 2008; Solomon, 2010). Ligno-
cellulosic biomass consists mainly of cellulose, hemi-
celluloses, and lignins. Lignin accounts for 20% to 30%
of the dry weight of biomass and for a considerably
higher proportion of the carbon and energy, depending
on the plant species. Its biosynthetic pathway is rather
well described in model species, starting from the
amino acid Phe and finally leading to the canonical

monolignols p-coumaryl, coniferyl, and sinapyl alco-
hols. After their biosynthesis, these monolignols are
transported to the cell wall (CW), where they are ox-
idized by peroxidases and laccases to monolignol
radicals that combinatorially couple and cross-couple
with the growing oligomer to form the lignin poly-
mer, resulting in the formation of p-hydroxyphenyl
(H), guaiacyl (G), and syringyl (S) units in the lignin
polymer (Freudenberg, 1959; Boerjan et al., 2003;
Vanholme et al., 2010a, 2013b). The generation of
biofuels or other bio-based products from lignocel-
lulosic biomass typically requires three steps: a pre-
treatment to increase the accessibility to the plant CW
polysaccharides, a saccharification step in which the
polysaccharides are hydrolyzed by enzymes into
primary sugars, and a fermentation step that converts

1018 Plant Physiology�, November 2017, Vol. 175, pp. 1018–1039, www.plantphysiol.org � 2017 American Society of Plant Biologists. All Rights Reserved.
 www.plantphysiol.orgon November 8, 2017 - Published by Downloaded from 

Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-7576-5476
http://orcid.org/0000-0002-7576-5476
http://orcid.org/0000-0002-7576-5476
http://orcid.org/0000-0002-7576-5476
http://orcid.org/0000-0002-7576-5476
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-5428-2160
http://orcid.org/0000-0001-5428-2160
http://orcid.org/0000-0001-5428-2160
http://orcid.org/0000-0001-5428-2160
http://orcid.org/0000-0001-5428-2160
http://orcid.org/0000-0002-0337-2999
http://orcid.org/0000-0002-0337-2999
http://orcid.org/0000-0002-0337-2999
http://orcid.org/0000-0002-0337-2999
http://orcid.org/0000-0002-0337-2999
http://orcid.org/0000-0002-0337-2999
http://orcid.org/0000-0002-6757-1524
http://orcid.org/0000-0002-6757-1524
http://orcid.org/0000-0002-6757-1524
http://orcid.org/0000-0002-6757-1524
http://orcid.org/0000-0002-6757-1524
http://orcid.org/0000-0003-4802-8849
http://orcid.org/0000-0003-4802-8849
http://orcid.org/0000-0003-4802-8849
http://orcid.org/0000-0003-4802-8849
http://orcid.org/0000-0003-4802-8849
http://orcid.org/0000-0002-6093-4521
http://orcid.org/0000-0002-6093-4521
http://orcid.org/0000-0002-6093-4521
http://orcid.org/0000-0002-6093-4521
http://orcid.org/0000-0002-6093-4521
http://orcid.org/0000-0003-1495-510X
http://orcid.org/0000-0003-1495-510X
http://orcid.org/0000-0003-1495-510X
http://orcid.org/0000-0003-1495-510X
http://orcid.org/0000-0003-1495-510X
http://orcid.org/0000-0003-1495-510X
http://orcid.org/0000-0003-1495-510X
http://orcid.org/0000-0002-0092-1155
http://orcid.org/0000-0002-7576-5476
http://orcid.org/0000-0002-0957-708X
http://orcid.org/0000-0002-7101-734X
http://orcid.org/0000-0001-5848-3138
http://orcid.org/0000-0002-3121-9705
http://orcid.org/0000-0001-7425-7464
http://orcid.org/0000-0001-5428-2160
http://orcid.org/0000-0002-0337-2999
http://orcid.org/0000-0002-6757-1524
http://orcid.org/0000-0003-4802-8849
http://orcid.org/0000-0002-6093-4521
http://orcid.org/0000-0003-1495-510X
http://crossmark.crossref.org/dialog/?doi=10.1104/pp.17.00834&domain=pdf&date_stamp=2017-10-26
http://www.plantphysiol.org


the monosaccharides to, for example, ethanol. Lignin
interferes with the saccharification process by limit-
ing the access of the CW polysaccharides to enzy-
matic degradation (Chen and Dixon, 2007; Van Acker
et al., 2013) and by binding with the enzymes them-
selves (Gao et al., 2014). Decreasing the amount of
lignin is often seen as a promising strategy to improve
saccharification in bioenergy crops, but it is also often
accompanied by an undesired biomass yield penalty
(Bonawitz and Chapple, 2013; Van Acker et al., 2013).
As an alternative, lignin composition can be modified
in order to make lignin easier to extract or degrade
during pretreatments (Vanholme et al., 2008; Simmons
et al., 2010; Mottiar et al., 2016).
Changing the ratios of the traditional monolignols

responsible for producing the H, G, and S units in lignin
has already been shown to affect saccharification effi-
ciency. Based on a set of Arabidopsis (Arabidopsis
thaliana) mutants with a range of S/G ratios, a high S/G
ratio was found to have a negative impact on sacchar-
ification without pretreatment, whereas the S/G ratio
had no impact on saccharification efficiency when an
acid pretreatment preceded the saccharification (Van
Acker et al., 2013). The frequency of H units also is an
important parameter determining saccharification effi-
ciency. H units are preferentially present as phenolic
end groups in the lignin polymer (Huis et al., 2012). By
increasing their frequency, the lignin polymers become
shorter and, therefore, are easier to extract from the

plant CW. This has been demonstrated in alfalfa (Med-
icago sativa) down-regulated in either p-COUMARATE
3-HYDROXYLASEorHYDROXYCINNAMOYL-COENZYME
A:SHIKIMATEHYDROXYCINNAMOYLTRANSFERASE
(Ziebell et al., 2010). In addition to the traditional mono-
lignols, alternativemonomers can be incorporated into the
lignin polymer to render it easier to degrade or extract. For
example, the incorporation of ferulic acid leads to the
formation of acetal bonds that can be easily cleaved under
mildly acidic conditions (Leplé et al., 2007; Ralph et al.,
2008). The abundance of ferulic acid-derived units was
positively correlated with saccharification efficiency in
poplar down-regulated in CINNAMOYL-COENZYME
A REDUCTASE (CCR), although a causal relationship
has not yet been demonstrated (Van Acker et al., 2014).
On the other hand, down-regulation of CAFFEIC
ACID O-METHYLTRANSFERASE (COMT) leads to
the incorporation of 5-hydroxyconiferyl alcohol (i.e.
the reduction product of the enzyme’s direct substrate,
5-hydroxyconiferaldehyde), resulting in lignin-containing
benzodioxane structures and generally more digestible
CWs (Van Doorsselaere et al., 1995; Lapierre et al., 1999;
Ralph et al., 2001; Chen andDixon, 2007; Vanholme et al.,
2010b; Weng et al., 2010; Van Acker et al., 2013). In ad-
dition to amodification of the lignin amount or the ratio of
the traditional lignin monomers in the polymer, another
strategy to improve biomass processing is to introduce
chemically labile bonds into the lignin polymer by
expressing genes leading to the biosynthesis of mono-
lignol conjugates (Vanholme et al., 2012a; Tsuji et al., 2015;
Mottiar et al., 2016). For example, engineering the bio-
synthesis of monolignol ferulates by expressing a
FERULOYL-COENZYME A MONOLIGNOL TRANS-
FERASE from Angelica sinensis in poplar (Populus spp.;
Wilkerson et al., 2014) or increasing the p-coumaroylation
of monolignols by expressing a p-COUMAROYL-
COENZYME A:MONOLIGNOL TRANSFERASE from
brachypodium (Brachypodium distachyon) in Arabidopsis
(Petrik et al., 2014; Smith et al., 2015; Sibout et al., 2016)
make the lignin polymer more susceptible to alkaline
pretreatment.

Here, lignin composition was modified by down-
regulating the gene encoding a CINNAMYL ALCOHOL
DEHYDROGENASE (CAD), the enzyme that catalyzes
the last step of the monolignol biosynthetic pathway in
which hydroxycinnamaldehydes are reduced to their
corresponding hydroxycinnamyl alcohols, the mono-
lignols. The down-regulation of CAD has been studied
previously inmany species: in Arabidopsis (Sibout et al.,
2003, 2005; Van Acker et al., 2013; Anderson et al., 2015),
poplar (Baucher et al., 1996; Lapierre et al., 1999, 2004;
Pilate et al., 2002), Nicotiana spp. (tobacco; Halpin et al.,
1994; Hibino et al., 1995; Chabannes et al., 2001; Kaur
et al., 2012), Pinus spp. (pine; MacKay et al., 1997; Ralph
et al., 1997; Wu et al., 1999), maize (Halpin et al., 1998;
Vermerris et al., 2010; Fornalé et al., 2012), Panicum vir-
gatum (switchgrass; Fu et al., 2011; Saathoff et al., 2011),
Eucalyptus camaldulensis (Valério et al., 2003),Oryza sativa
(rice; Zhang et al., 2006; Li et al., 2009), alfalfa (Baucher
et al., 1999; Jackson et al., 2008), and brachypodium
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(Bouvier d’Yvoire et al., 2013). Most of these studies fo-
cused on the consequences of down-regulating CAD
expression on lignin content and composition, and sev-
eral studies also investigated the biomass properties of
these CAD-deficient plants for industrial applications
like pulping or biofuel production (Baucher et al., 1996;
Lapierre et al., 1999; Pilate et al., 2002; Sibout et al., 2005;
Jackson et al., 2008; Fu et al., 2011; Saathoff et al., 2011;
Fornalé et al., 2012; Bouvier d’Yvoire et al., 2013;
Anderson et al., 2015). Depending on the studied species,
the lignin content and composition (S/G ratio) either
remained equal or were reduced, independently of each
other, compared with the corresponding control line.
However, all studied species had the common feature
that down-regulating CAD caused the incorporation of
hydroxycinnamaldehydes into the lignin polymer. The
presence of hydroxycinnamaldehydes during lignin
polymerization typically results in a reddish-brown
coloration of the xylem (Halpin et al., 1994; Baucher
et al., 1996, 1999; Ralph et al., 1997; Lapierre et al., 1999,
2004; Chabannes et al., 2001; Pilate et al., 2002; Sibout
et al., 2005; Zhang et al., 2006; Jackson et al., 2008;
Vermerris et al., 2010; Bouvier d’Yvoire et al., 2013), a
coloration that results not from the lignin itself but from
side reactions of the hydroxycinnamaldehydes (Kim
et al., 2002; Fournand et al., 2003; Ralph et al., 2008). In
poplar, CAD has been down-regulated previously by
sense and antisense constructs. In these transgenic lines,
whether grown in the greenhouse or in the field, the
lignin composition (S/G ratio) was unaffected but the
typical incorporation of hydroxycinnamaldehydes,
mainly sinapaldehyde, was seen (Baucher et al., 1996;
Lapierre et al., 1999, 2004; Pilate et al., 2002). Lignin
content was equal to that in the wild type in young (3-
month-old) greenhouse-grown poplar trees (Baucher
et al., 1996) but was reduced, by up to 11%, in older (7-
and 12-month-old) greenhouse-grown CAD-deficient
poplars (Lapierre et al., 2004). No biomass penalty was
observed for the antisense CAD-deficient trees, whether
grown in the greenhouse or in the field (Baucher et al.,
1996; Lapierre et al., 1999; Pilate et al., 2002).

Kraft pulping was the first industrially relevant
process that was applied to wood derived from CAD-
deficient poplars. Pulp from the transgenic poplars had
a lower Kappa number than that from their wild-type
controls (Baucher et al., 1996; Pilate et al., 2002), indi-
cating that less alkali or lower cooking time was re-
quired to extract lignin from thewood to reach the same
degree of delignification. The reason for the increased
susceptibility of lignin to alkaline degradation has been
attributed to the increased presence of conjugated car-
bonyl functionalities (situated at the para-position relative
to the 4-O-aryl-ether linkages) in the lignin that originate
from the incorporation of hydroxycinnamaldehydes,
the substrates of CAD (Vanholme et al., 2012a), as well as
to the higher abundance of free-phenolic end groups
(Lapierre et al., 2004). These data suggested that lignin
also might be easier to remove during the alkaline bio-
mass pretreatments used in the production of fermentable
sugars. Indeed, in CAD-deficient alfalfa (Jackson et al.,

2008), maize (Fornalé et al., 2012), switchgrass (Fu et al.,
2011; Saathoff et al., 2011), and brachypodium (Bouvier
d’Yvoire et al., 2013), the saccharification yield was im-
provedwhenusingdifferent types of pretreatment, and in
maize, the increased saccharification yield also translated
into an increased bioethanol yield of 8% when expressed
on a dry biomass basis (Fornalé et al., 2012). However,
although poplar has economic potential to be commer-
cialized as a second-generation bioenergy crop when
grown under a short-rotation coppice culture (Littlewood
et al., 2014), no data are yet available on saccharification
yields in CAD-deficient poplars.

The phenotypes of the poplars that were down-
regulated for CAD using sense and antisense con-
structs often were not uniform over the xylem, as
visualized by the nonhomogenous red xylem pheno-
type (Baucher et al., 1996). Given the prognosis that
CADdeficiency in poplarmay improve saccharification
efficiency to fermentable sugars on the one hand, and
given the efficiency of the RNA interference (RNAi)
strategy to stably and strongly down-regulate target
genes on the other hand, new transgenic poplar (Pop-
ulus tremula 3 Populus alba) lines specifically down-
regulated in CAD1 expression and having only 15%
residual CAD activity (hpCAD) were developed. In
addition to confirming the commonly known features
of CAD down-regulation, as reported before, thio-
acidolysis and NMR revealed that only sinapaldehyde,
but not coniferaldehyde, incorporated at increased levels
into the lignin polymer of hpCADpoplars. To study this in
more detail, the metabolic consequences of CAD1 down-
regulation were mapped using ultra-high-performance
liquid chromatography-mass spectrometry (UHPLC-
MS)-based phenolic profiling and structural characteri-
zation of differentially accumulating compounds by
multistage mass spectrometry (MSn), NMR, and oligoli-
gnol sequencing (Morreel et al., 2010a, 2010b). Our data
show that sinapaldehyde is either oxidatively cross-
coupled into its homodimer S9(8-8)S9 and into the lignin
polymer or, togetherwith coniferaldehyde, converted to a
plethora of cinnamic acids and derivatives, amongwhich
the accumulation of syringyl lactic acid hexoside is the
most prominent. Finally, biomass processing of the
CAD1 down-regulated poplar wood showed large im-
provements in saccharification efficiency upon alkaline
pretreatments.

RESULTS

Generation of CAD1-Deficient Transgenic Poplar

The CAD gene family in poplar (Populus trichocarpa)
consists of 16 members, of which two, PtrCAD1
(Potri.009G095800) and PtrCAD2 (Potri.016G078300),
encode CAD enzymes able to mediate the reduction of
hydroxycinnamaldehydes into monolignols (Barakat
et al., 2009; Shi et al., 2010; Wang et al., 2014). PtrCAD1
has been reported to be the only CAD gene that is
highly expressed in xylem (Shi et al., 2010), although
both CAD genes are highly expressed in xylem according
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to www.popgenie.org and Sundell et al. (2017). PtrCAD1
has a higher catalytic efficiency toward the hydroxy-
cinnamaldehydes than PtrCAD2 and, hence, is thought to
play themost prominent role in lignin biosynthesis in this
tissue (Shi et al., 2010; Wang et al., 2014). To down-
regulate CAD1 in P. tremula 3 P. alba, the P. tremula 3
P. alba CAD1 coding sequence (PtaCAD1; Supplemental
Fig. S1A), corresponding to PtrCAD1, was cloned in the
pHellsgate8 gene-silencing vector to produce 18 indepen-
dent cauliflower mosaic virus 35S-driven hpCAD trans-
genic poplar lines. Seventeen of the transgenic lines
exhibited the typical red xylem phenotype, suggesting
that the expression of CAD was effectively reduced in
these lines (Supplemental Fig. S2A). CAD activity was
determined in eight lines (1, 2, 4, 11, 14, 19, 20, and 24)
showing different levels of xylem coloration. Line 20,
which did not show the red wood phenotype, did not
show any reduction in CAD activity, whereas CAD ac-
tivity was reduced similarly in the other seven lines to
approximately 15% residual alcohol dehydrogenase ac-
tivity (Supplemental Fig. S2B). Of those seven remaining
lines, based on their stable phenotype over multiple in-
dependent experiments, the hpCAD lines 4, 19, and
24 were chosen for all further analyses. The transcript
levels of PtaCAD1 and PtaCAD2 in developing xylem
were determined using quantitative reverse transcription
(qRT)-PCR in the wild type and the selected hpCAD lines
(Supplemental Fig. S1B). As in P. trichocarpa, both Pta-
CAD1 and PtaCAD2 are expressed at similar levels in the
xylem of wild-type poplars. For PtaCAD1, on average, a
5% residual transcript level was observed for the hpCAD
lines compared with the wild type. Transcript levels of
PtaCAD2were not affected, illustrating the specific down-
regulation of CAD1.
To further identify potential off-target effects of the

used silencing approach, a BLAST analysis revealed a
gene that had a high sequence similarity with PtaCAD1
(E-value = 2e-153). This gene, referred to as Pta_tCAD1,
appeared as a truncated version of PtaCAD1, miss-
ing the first three exons of the PtaCAD1 sequence
(Supplemental Fig. S3A). The Pta_tCAD1 transcript
level remained under the detection limit in developing
xylem of both wild-type and hpCAD poplars, which is
consistent with the low expression of the corresponding
gene (Potri.001G30000) in P. trichocarpa according to
www.popgenie.org. Pta_tCAD1 lacks the majority
(seven out of eight conserved amino acids) of the
N-terminal GroES-like structure known to contain the
zinc-binding domains that act in the catalytic site of al-
cohol dehydrogenases (Youn et al., 2006a). In addition,
seven out of 12 conserved residues, hypothesized to be
involved in substrate binding, are absent from the
Pta_tCAD1 protein as well as a Gly-rich (GxGxxG) motif,
necessary for binding the NADP+ cofactor (Supplemental
Table S1). The nucleotide-binding domain of PtaCAD1 is
composed of six parallel b-sheets and five helices, but the
Pta_tCAD1 protein lacks one b-sheet and two helices.
Altogether, it is highly unlikely that Pta_tCAD1 is able to
perform the conversion of hydroxycinnamaldehydes to
the corresponding alcohols.

Phenotypic Analysis of Greenhouse-Grown CAD1-
Deficient Poplar

Five biological replicates of all three hpCAD lines and
thewild typewere obtained by in vitromicropropagation,
transferred to soil, and cut back after 15 weeks of growth
to ensure simultaneous and uniform regrowth. Trees
originating from the regrowth were harvested after
3.5 months, when they were approximately 1.5 m tall.
Stem height and weight were similar for all lines when
compared with wild-type poplars (Table I). Upon
debarking, the wood showed a typical red coloration
distributed uniformly over the entire stem and not in
patches, as was observed previously in particular poplar
lines down-regulated in CAD (Baucher et al., 1996), CCR
(Leplé et al., 2007; Van Acker et al., 2014), or COMT (Tsai
et al., 1998) by sense or antisense methods. This uniform
red coloration was not limited only to young xylem but
was also observed in the entire cross section of hpCAD
poplars (Fig. 1A) and is indicative of a stable down-
regulation of CAD in these newly generated transgenic
lines.

Histochemical analyses were performed to evaluate
the effect of CAD1 down-regulation on wood anatomy
(Fig. 1B; Supplemental Fig. S4). Inspection of the sec-
tions did not reveal any obvious differences between
hpCAD lines and the wild type; in particular, no col-
lapsed vessel (irregular xylem) phenotype could be
detected. However, blue light autofluorescence (in-
duced by a 488-nm excitation wavelength; Fig. 1B, left
columns) was stronger in the sections of the hpCAD
poplars compared with those of the wild type, espe-
cially in fibers and vessels, suggesting compositional
shifts in the CW components. The phloroglucinol-HCl
(Wiesner) reagent reacts with the aldehyde end groups
in lignin (Kim et al., 2003) and generally is used to
visualize the presence of lignin in a concentration-
dependent manner (Fig. 1B, middle columns). On the
other hand, the Mäule reagent specifically stains S lig-
nin red (Fig. 1B, right columns). Wild-type and hpCAD
poplars did not stain differently with either of these two
lignin-specific stains.

CAD1-Deficiency Effects on Lignin Content and Structure

The CW composition was determined for 3.5-month-
old hpCAD and wild-type poplar stems. CWs were
purified from air-dried wood samples by removing
extractives using water and ethanol under sonication.
The recovered extract-free sample corresponds to CWs.
When expressed per dry weight, the CW percentage
was similar for all transgenic poplar andwild-type lines
(Table II). Lignin content was determined by the Klason
procedure. This method allowed a determination of the
acid-insoluble lignin fraction (referred to as Klason
lignin [KL]) and the acid-soluble lignin fraction (ASL).
Both KL and ASL contents decreased on average by
10% and 13%, respectively, for hpCAD poplar lines
comparedwith the wild type (Table II). These moderate
reductions were not compensated for by significantly
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different levels of cellulose or hemicelluloses, except
that hpCAD19 displayed a 9% increased hemicellulose
level (Table II). The relative distribution of the main
neutral sugars from the amorphous polysaccharides
revealed some minor changes in hpCAD lines, mainly a
moderate Xyl enrichment (Table II).

Lignin structure was studied by thioacidolysis, an
analytical degradation method that yields lignin-
derived monomers from lignin units involved only in
labile 8-O-4 (b-O-4) bonds. When expressed in mmol g21

lignin, thioacidolysis yield is reduced when the propor-
tion of resistant interunit bonds increases, but it also
may be reduced when lignins are derived from mono-
mers other than the prototypical monolignols. The thio-
acidolysis yield (i.e. the sum of all released monomers,
including aldehyde-derived monomers) expressed on a
KL content basis was reduced by approximately 20%

for the three hpCAD poplar lines compared with the
wild type (Table III). The relative frequency of S thio-
acidolysis monomers derived from S units involved
only in arylglycerol-b-aryl ether structures was found
to be reduced in the hpCAD poplars, whereas that of G
monomers was increased (Table III; Supplemental
Table S2). This result reveals that CAD1 deficiency
more specifically affects the formation of conventional
syringylglycerol-b-aryl ether units. Concomitant with
this reduction, S indenes released from sinapaldehyde
units ether linked at their 8-positions (Kim et al., 2002)
were found to increase substantially, up to 20-fold, as
well as the S dithioketal compound derived from
syringaldehyde end groups (Table III; for the struc-
tures of these compounds, see Supplemental Fig. S5).
By contrast, CAD1 deficiency induced little change in
the frequency of vanillin-derived monomers (data not

Table I. Biomass of CAD1-deficient poplar compared with the wild type

Values shown are average 6 SD height and fresh weight of 3.5-month-old greenhouse-grown poplar
stems from wild-type and hpCAD lines (n = 5). No significant differences were found (Dunnett’s adjusted
Student’s t test, P , 0.05).

Parameter Wild Type hpCAD4 hpCAD19 hpCAD24

Height (cm) 148.3 6 17.3 131.4 6 12.9 150.1 6 16.6 149.0 6 10.2
Fresh weight (g) 53.4 6 14.4 49.9 6 12.5 60.8 6 18.7 58.5 6 10.7

Figure 1. Microscopy. A, The typical red colora-
tion associated with CAD1 down-regulation is
visible across the entire stem section. B, Wood
anatomy, ranging from cambium to pith, of the
wild type (WT) and hpCAD4 (for hpCAD19 and
hpCAD24, see Supplemental Fig. S4). Left col-
umns show blue light autofluorescence (induced
by long-wavelength excitation) of a stem section,
middle columns show the results of the cross
sections after Wiesner staining, and right columns
are the results after treatment with Mäule reagent.
For the Wiesner and Mäule staining, the three
images are observations at three different spots of
one single section. For all three columns, repre-
sentative images are shown.

1022 Plant Physiol. Vol. 175, 2017

Van Acker et al.

 www.plantphysiol.orgon November 8, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.17.00834/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00834/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00834/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00834/DC1
http://www.plantphysiol.org


shown). Coniferaldehyde end groups that are mainly
responsible for the Wiesner lignin staining were found
to be less abundant in the lignins from hpCAD poplars
than in the wild type (Table III).
The frequency of lignin units with free phenolic

groups is a major structural trait that modulates im-
portant properties, such as lignin susceptibility to al-
kaline or oxidative treatments. This parameter was
examined by thioacidolysis performed on per-
methylated samples (Lapierre et al., 1988, 1989;
Lapierre and Rolando, 1988). In agreement with pre-
vious data (Lapierre et al., 1988; Lapierre and Rolando,
1988), and whatever the line (Table IV), about 90% of
lignin-derived H monomers were found to be methyl-
ated (i.e. derived from terminal units with free, and
therefore methylatable, phenolic groups). The fre-
quency of G units with free phenolic groups also was
increased substantially, from 24% in the wild type to
33% in hpCAD poplars. For S units, which are mostly
internal units (Lapierre and Rolando, 1988), the fre-
quency of free phenolic groups also was increased

slightly in CAD1-deficient poplars (from 2.4% in the
wild type to 3.1% in hpCAD poplars). Thus, concomi-
tantwith the lower release of the normalmonomers and
the increased release of sinapaldehyde and syringal-
dehyde units, CAD1 deficiency induced a higher fre-
quency of terminal units with free phenolic groups in
poplar lignins. This alteration is diagnostic for lignins
displaying more branching structures (i.e. biphenyl
and/or biphenyl ether bonds) and/or, as is most likely
here, lignins with lower averagemolecular weight (Mr).

Poplar lignins are acylated specifically by p-
hydroxybenzoate, and this acylation is performed on
monolignols before their polymerization (Morreel et al.,
2004; Ralph, 2010; Lu et al., 2015). HPLC analysis of the
low-molecular-weight phenolics released upon mild al-
kaline treatment of the extract-free samples revealed that
CAD1 deficiency did not affect the level of lignin-linked
p-hydroxybenzoate esters (Table IV). In contrast, the
amounts of alkali-released vanillin and syringaldehyde
were found to be increased considerably in the hpCAD
poplar lines. These aldehydes originate from the

Table II. CW composition

CW analyses of the stems from wild-type and 3.5-month-old hpCAD poplars: (A) CW content (% CW)
and composition and (B) distribution of the main CW neutral sugars. Boldface or underlined values in-
dicate significantly increased or decreased values, respectively, as compared with those of the wild type
(Dunnett’s adjusted Student’s t test, P , 0.05).

A) CW composition (in mg/g CW)a

Line % CW KL ASL Cellulose Hemicellulose

Wild type 87.3 6 0.8 194.7 6 7.9 16.8 6 0.3 482 6 24 268 6 12
hpCAD4 87.6 6 0.0 175.0 6 3.3 14.5 6 0.1 495 6 16 279 6 17
hpCAD19 87.8 6 0.7 183.6 6 1.2 14.5 6 0.5 492 6 15 290 6 10
hpCAD24 88.6 6 0.5 177.5 6 3.8 14.2 6 0.1 487 6 11 278 6 16

B) Relative distribution of main neutral sugars from amorphous polysaccharides (% by weight)b

Line Rha Ara Xyl Man Gal Glc

Wild type 2.1 1.6 77.0 3.9 3.0 12.5
hpCAD4 2.0 1.6 79.2 3.1 3.2 11.0
hpCAD19 2.1 1.5 79.7 3.4 2.9 10.4
hpCAD24 2.2 1.6 79.5 3.4 3.0 10.4

aThe data represent means 6 SD from individually analyzed plants (n = 5). bThe SD between
biological replicate analyses is in the 5% to 10% range.

Table III. Lignin composition

The determination of thioacidolysis monomers released from extract-free stems of wild-type and CAD1-deficient poplar lines is shown. The data
represent means 6 SD from individually analyzed plants (n = 5). Thioacidolysis yields are expressed in mmol g21 KL. Boldface or underlined values
indicate significantly increased or decreased values, respectively, as compared with those of the wild type (Dunnett’s adjusted Student’s t test,
P , 0.05).

Line

Main H, G, and S Monomers: Total

Yield and Relative Molar % Monomers from Aldehyde Units Total Lignin-Derived

Monomers (Relative %

of the Wild Type)
H + G + S H G S

Coniferaldehyde

End Groups

Sinapaldehyde-Derived

Indene

Syringaldehyde

End Groups

mmol g21 KL % mmol g21 KL mmol g21 KL

Wild type 2,535 6 78 0.6 6 0.2 35.0 6 1.1 64.4 6 1.0 5.2 6 0.3 4.2 6 0.3 6.1 6 0.2 2,572 6 66 (100)
hpCAD4 1,821 6 31 0.5 6 0.0 40.0 6 0.4 59.6 6 0.4 3.3 6 0.0 154.0 6 10.7 100.5 6 2.5 2,093 6 39 (81)
hpCAD19 1,805 6 13 0.5 6 0.1 40.1 6 0.3 59.3 6 0.3 3.4 6 0.5 139.8 6 12.6 80.1 6 17.1 2,039 6 42 (79)
hpCAD24 1,876 6 111 0.5 6 0.1 39.4 6 0.3 60.1 6 0.2 3.6 6 0.2 141.8 6 5.4 70.3 6 3.7 2,105 6 106 (81)
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oxidative degradation of labile lignin units, and their
recovery is increased by the severity of the alkaline
treatment (Bouvier d’Yvoire et al., 2013). CAD1 defi-
ciency, therefore, markedly affected the structure of
poplar lignins, noticeably by increasing the frequency
of labile lignin units that are oxidatively degraded to
C6C1 aldehydes during mild alkaline treatment (i.e.
free-phenolic terminal units including sinapaldehyde
moieties linked via their C8 position).

The ligninmodifications observed using thioacidolysis,
mainly the increase in aldehyde components, were
supported by the results from 2D 1H-13C correlation
heteronuclear single-quantum coherence (HSQC) NMR
spectrometry, which, to our knowledge, was applied
here for the first time on CAD1-deficient poplars (Fig. 2).
Products of p-hydroxycinnamaldehyde’s endwise cou-
pling into the lignin polymer were seen readily from
examination of both the aldehyde (Fig. 2A) and aromatic
(Fig. 2B) regions of the NMR spectra, confirming that
certainly sinapaldehyde and, less clearly evidently,
coniferaldehyde are functioning as lignin monomers in
chain extension reactions (Kim et al., 2002, 2003; Lapierre
et al., 2004; Anderson et al., 2015). All three hpCAD
lines showed the appearance of cross-coupled
hydroxycinnamaldehyde 8-O-4-linked structures at
similar levels (about 20% comparedwith less than 1% for
the wild type) along with 8-8-linked homodimeric
structural units at trace levels (Fig. 2A; Supplemental
Table S3). Two points regarding these correlations and
their interpretations are of note. First, the internal
hydroxycinnamaldehyde’s 8-O-4-linked structures only
appear less prevalent than the various V, SA, and X end
groups because of the nature of these HSQC spectra
(Mansfield et al., 2012), as end units are significantly
overrepresented due to their higher mobility and longer
relaxation. Thus, the internal units should be seen as
more significant than they appear from the relative cor-
relation peak volumes. Second, as we have proven pre-
viously (Kim et al., 2000, 2003), coniferaldehyde will not
8-O-4 cross-couple with G units, either in planta or
in vitro, but only with S units. For this reason, the G9-(8-
O-4)-G structure is shown with a cross through it; the

structure resulting from coniferaldehyde’s 8-O-4 homo-
coupling, however, is possible, but it cannot be identified
unambiguously from these spectra. The H/G/S distri-
bution differences in lignin can be deduced from the
aromatic region of the NMR spectra (Fig. 2B). Aromatic
moieties from hydroxycinnamaldehydes (mainly from
8-O-4-linked cross-coupled structures, and mainly from
sinapaldehyde) also were revealed as new products
from this region; see the S9G2/6 and S9S2/6 correlations
that are not evident in the wild type’s spectrum. About
27% of the total lignin aromatics detected by NMR were
aldehydes in the transgenic lines, as comparedwith only
13% in the wild type (although these figures are again
distorted by the significant overestimation of end group
units versus those of the internal units in the chain in the
NMR of these differentially and fast-relaxing systems).
The S/G ratios of units derived from the canonical
monolignols only (without the hydroxycinnamaldehydes)
were lower in hpCAD poplars (as also observed with
thioacidolysis; Supplemental Table S2). In contrast, the
total S/G ratios (with hydroxycinnamaldehydes) were
higher in the transgenic lines (Fig. 2B; Supplemental
Table S3).

The aliphatic region (Fig. 2C) validates the H/G/S
distribution changes in the aromatic region and pro-
vides structural details regarding the bonding types
and distribution of interunit linkage patterns present
in the lignin fraction of whole CWs. However, with
the unsaturation of the side chain and the aldehydic
g-position, no information regarding the abundance of
aldehydes can be deduced from this region. Additional
lignin compositional changes were found for the
CAD1-deficient poplars compared with the wild type.
The relative abundance of monolignol-derived b-aryl
ether (b-O-4 [A]) structures was higher as a conse-
quence of the relatively lower abundance of both phe-
nylcoumaranB (8-5) and resinolC (8-8) structures in the
hpCAD poplars. Cinnamyl alcohol end groups X1 also
appears to be increased slightly, from integrals of 6% in
the wild type to 7% to 10% in CAD1-deficient poplars,
but this is due in part to the distortion caused by the
lower level of monolignol-derived structures and the

Table IV. Free-phenolic group analysis and low-Mr phenolics released upon alkaline treatment

Relative percentages of free-phenolic groups in H, G, or S lignin units involved only in 8-O-4 bonds, as
revealed by thioacidolysis of permethylated extract-free stems from wild-type and hpCAD poplar lines, are
shown. Amounts are given for p-hydroxybenzoic acid, vanillin, and syringaldehyde, expressed in mg g21

KL, released by mild alkaline hydrolysis of extract-free stems of wild-type and hpCAD poplar lines.
Calculations are as described previously (Lapierre, 2010). The data represent means 6 SD from individ-
ually analyzed plants (n = 5). Boldface values are increased significantly compared with the wild type
(Dunnett’s adjusted Student’s t test, P , 0.05).

Line

Free-Phenolic Groups of H, G, or S Units

Only Involved in b/8-O-4 Bonds Alkali-Released Phenolic Compound

H G S p-Hydroxybenzoic Acid Vanillin Syringaldehyde

% mg g21 KL

Wild type 90.1 6 1.1 24.2 6 0.4 2.4 6 0.1 20.6 6 1.3 1.7 6 0.1 1.2 6 0.1
hpCAD4 87.8 6 1.4 33.1 6 0.4 3.2 6 0.1 23.4 6 0.7 6.9 6 0.3 24.0 6 0.8
hpCAD19 89.3 6 1.6 32.4 6 1.0 3.0 6 0.3 18.8 6 2.7 6.3 6 0.2 22.0 6 1.1
hpCAD24 89.2 6 2.5 32.6 6 0.8 3.1 6 0.3 19.0 6 2.3 6.4 6 0.8 23.6 6 2.6
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Figure 2. NMR. Partial short-range 1H-13CHSQCNMR spectra from thewhole CWs of 3.5-month-oldwild-type (WT) andCAD1-deficient poplar lines,
as indicated in the top left corner of each plot. A, Aldehyde region. B, Lignin aromatic and double bond region. C, Lignin oxygenated aliphatic and
polysaccharide region. The colors of the contours correspondwith the structures drawn at the bottom of each plot. In B, the signals of the S, S*,G, X2G9,
andH units sum to 100%. The signal of pB is given in parentheses, because it is left out of this sum. pB is not an actual lignin unit but a decoration found
mainly on S units derived from lignification usingmonolignol p-hydroxybenzoates (Lu et al., 2015). Similarly, in C, X1 is not always a pure peak and, as
an end group, is overrepresented in these spectra; it is reported on the A + B + C = 100 basis. n = 4 for the wild type and n = 3 for each CAD1-deficient
line, and representative spectra are shown. Level data are from uncorrected integrals only.
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major monomer substitution (by sinapaldehyde; Fig.
2C; Supplemental Table S3).

Based on these NMR data, models were generated of
the lignin polymers in wild-type and hpCAD poplars
(Fig. 3; Supplemental Information S1). However, some
caution is necessary with these models. The models
were built to confirm the determined distribution of G
and S units as well as of the interunit linkage types and
contain only 20 units. Hence, it was impossible to ac-
curately represent minor units (i.e. units that were less
than 5% present). Nevertheless, the structures are fully
chemically legal, and various features attempt to follow
the best available current information (e.g. 4-O-5-linked
units D are free-phenolic and not represented as
branching units; Li et al., 2016; Yue et al., 2016). Despite
the clear difference in compositional unit frequencies
between the wild type and the CAD-lignin model, both
are primarily linear chains, akin to those drawn here.

Profiling of Methanol-Soluble Phenolics

It is remarkable that CAD1 down-regulation increases
sinapaldehyde incorporation into lignin whereas con-
iferaldehyde incorporation was not evidently increased.
This suggests that coniferaldehyde is metabolized in an-
other way. To gain insight into the effect of CAD1 down-
regulation on small-Mr phenolics, xylem extracts of
hpCAD andwild-type poplars were profiled via UHPLC-
MS (Fig. 4; Table V; Supplemental Table S4). From an
estimated 2,154 profiled compounds (see “Materials and
Methods”), 64 had a lower abundance (average fold
change, 0.5) in the hpCAD lines, whereas 348 showed a
higher abundance (average fold change . 2), as com-
pared with the wild type. In agreement with the lower

lignin content, down-regulation of CAD1 resulted in the
decrease of oligolignols formed by the combinatorial
coupling of the three canonical monolignols, as identified
by lignin sequencing (compounds 15–26 in Table V).
Among the structurally characterized mass-to-charge
ratio (m/z) features with an increased abundance upon
CAD1 down-regulation, phenylpropanoids derived from
sinapic and ferulic acids (3–5, 7, 9, 11, and 12 in Table V)
were prevalent. In addition, p-coumaroyl hexosyl hexose
(6), two caffeic acid derivatives (10 and 14), and two
benzoic acid derivatives (8 and 13) were characterized. In
addition, the m/z features of compounds 1 and 2 were
below the detection limit in the phenolic profiles of the
wild type but increased to levels of 24,156 and 8,650
times, respectively, above the detection limit in hpCAD
poplars. Thereby, these m/z features were among the
most prominent m/z features in the xylem extracts of
hpCAD poplars. Clearly, the flux through phenyl-
propanoid and monolignol biosynthesis upon the
down-regulation of CAD1was massively redirected to
the biosynthesis of compounds 1 and 2.

Structural elucidation of compounds 1 and 2 in-
volved both mass spectrometry (MS) and NMR analy-
ses. The MS data of compound 1 (m/z 413.1244,
C22H21O8, Dppm = 0.51) indicated a highly conjugated
structure that preferentially fragmented via the loss of
one or twomethyl radicals (the most abundant MS/MS
product ions were at m/z 398.10 and 383.07), losses that
are typical for methyl aryl ethers (Supplemental Table
S4; Bowie, 1990). Furthermore, the third and fourth
most abundant MS/MS product ions were observed at
m/z 369.09 and 354.07 due to the combined loss of one or
twomethyl radicals (215.02 or230.05Da, respectively)
and a formaldehyde radical (229 Da). Based on the
chemical formula and the mainMS/MS fragmentations,

Figure 3. Models based on NMR. Models conforming with the available data for polymers of 20 units for the wild type (WT) and
the CAD1-deficient poplar lignins are shown. For details on the features of these two models, see Supplemental Information S1.
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compound 1 was tentatively characterized as a sina-
paldehyde dimer. Examination via NMR of the purified
compound 1 and spectral comparison with that of a
previously synthesized model (Kim et al., 2003) identi-
fied this compound as S9(8-8)S9 1, a dimer consisting of
two units derived from sinapaldehyde (Supplemental
Fig. S6).

The MS/MS spectrum of compound 2 (precursor ion
at m/z 403.1248, C17H23O11, Dppm = 0.53) showed a
base peak at m/z 241.07 due to the loss of anhydrohex-
ose (2162.05 Da; Supplemental Fig. S7). Other product
ions at m/z 223.06, 208.04, 179.07, 164.05, and 149.02
were reminiscent of a sinapic acid-derived moiety
(Morreel et al., 2014). The sinapic acid product ion at
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cinnamyl alcohol dehydrogenase; HCALDH, hydroxycinnamaldehyde dehydrogenase; DBR, double-bond reductase. The ac-
tivities of PAL, C4H, 4CL, HCT, CCoAOMT, CCR, F5H, COMT, and CAD poplar enzymes have been described by Wang et al.
(2014); conversions with Kcat/KM . 0.1 were considered as proven and represented with solid arrows, whereas conversions with
Kcat/KM , 0.1 were considered as proposed and thus represented with dashed arrows. The b-oxidative side chain shortening of
cinnamoyl-CoAs is a potential pathway toward the different benzoic acids (Widhalm and Dudareva, 2015). DBR has been found
to reduce the C7-C8 double bond of p-coumaraldehyde and coniferaldehyde in Arabidopsis (Youn et al., 2006b), but it also might
reduce the corresponding hydroxycinnamoyl-CoAs (Ibdah et al., 2014). The functions of a heterotrimeric C4H/C3H protein
complex in the hydroxylation of p-coumaryl shikimate toward caffeoyl shikimate and a similar heterodimeric C4H/C3H protein
complex that is able to convert p-coumaric acid directly into caffeic acid in poplar have been described by Chen et al. (2011). The
role of HCALDH in catalyzing the oxidation of coniferaldehyde and sinapaldehyde to their corresponding carboxylic acids has
been shown in Arabidopsis (Nair et al., 2004). The role of CSE in catalyzing the hydrolysis of caffeoyl shikimate to caffeic acid has
been shown in Arabidopsis and Medicago truncatula, and evidence exists for a similar role of CSE in poplar (Vanholme et al.,
2013b; Ha et al., 2016). The biosynthesis of hydroxycinnamate shikimate and quinate esters has been established in Nicotiana
tabacum and Nicotiana benthamiana starting from their respective CoA thioesters via an HCT (Hoffmann et al., 2004). Glyco-
sylation by UDP-glycosyltransferases of hydroxycinnamic acids has been described previously (Meissner et al., 2008).
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m/z 223.06 results from the m/z 241.07 product ion due
to water loss. Therefore, the latter product ion repre-
sents a hydrated sinapic acid moiety. Because the m/z
241.07 product ion also fragmented to m/z 195.06 via
formic acid loss, a gas-phase reaction typical for
2-hydroxycarboxylic acids (Bandu et al., 2006; Greene
et al., 2013), this indicates that the hydroxyl function is
attached to the 2-position relative to the carboxylic acid.
The latter was confirmed by the presence of a product
ion at m/z 72.99 derived from the lactic acid moiety of
the compound 2 ion (for fragmentation pathways, see
Supplemental Fig. S7). Therefore, this compound was
characterized as syringyl lactic acid hexoside 2 (Table
V; Fig. 5). To verify the identity of compound 2, it was
purified from xylem extracts from hpCAD poplar for
structural elucidation by NMR; the HSQC spectrum

along with high-resolution proton and carbon data
(plotted on the projection axes) are shown in Figure 5.
The syringyl lactic acid hexoside structure was eluci-
dated via 1D proton and carbon and 2D correlation
spectroscopy (COSY), HSQC, and heteronuclear
multiple-bond correlation (HMBC) NMR experiments.
The chemical shifts were logically matched with the
structure, and the proton NMR coupling constants and
patterns showed the two protons at the C/H 7-position
and one proton at an obviously oxygenated 8-position
(based on its proton and carbon chemical shifts). A
phenolic glycoside was identified by the 2D HMBC
NMR data that showed a connection between the
phenolic carbon (C4) and the anomeric proton (H1) of
the glycoside. The glycoside peaks were assigned based
on a COSY experiment, but wewere not able to identify

Table V. Methanol-soluble phenolics

UHPLC-MS-based phenolic profiling of hpCAD4, hpCAD19, hpCAD24, and wild-type stems (n = 10, 10, 10, and 30, respectively). A list of
412 compounds (348 up and 64 down) with significantly different signal intensities between the wild type and the three hpCAD lines was obtained, of
which 26 compounds (14 up and 12 down) were structurally characterized. The structurally characterized compounds are shown in order of decreasing
fold change in abundance. The fold change was calculated as the average peak intensity in the three hpCAD lines divided by the average peak intensity
in the wild type. The tandem mass spectrometry (MS/MS) spectra of the individual metabolites can be found in Supplemental Table S4. The abundances
of compounds 1 to 14 were higher, whereas those of compounds 15 to 26 were lower, in the hpCAD poplars. Whenever the compound was not
detected, an arbitrary peak intensity of 50 was taken into account to compute the fold change. In the column Elucidation Level, I indicates identified, a
structure that was elucidated via NMR or by spiking the synthesized compound; A indicates annotated, a structure with a rather firm structural elu-
cidation based on comparison of the MS/MS spectrum with those of identified structural analogs and on the accurate m/z value; and C indicates
structurally characterized, a fairly high degree of certainty in the structural elucidation that is based on the MS/MS spectral interpretation, accurate m/z
value, and data available from the literature and public databases (Morreel et al., 2014). SMe, 7-O-Methylsyringylglycerol moiety.

No. Trivial Name
Elucidation

Level

Retention

Time
m/z

Average Peak Intensity
Fold

ChangeWild

Type hpCAD4 hpCAD24 hpCAD19

min

1 S9(8-8)S9 I 12.39 413.1244 50 1,278,235 1,155,155 1,190,069 24,156
2 Syringyl lactic acid hexoside I 3.21 403.1248 50 528,780 403,322 365,399 8,650
3 Sinapic acid hexoside A 4.47 385.1091 50 39,568 26,677 7,034 488
4 Feruloyl quinic acid A 7.97 367.1036 71 20,980 12,293 5,362 181
5 Dihydroferulic acid hexoside A 3.86 357.1198 50 8,089 7,847 3,480 129
6 p-Coumaric acid hexosyl hexose A 3.74 487.1564 78 12,240 7,252 6,467 111
7 Feruloyl hydroxyl-methoxybenzyl

hexoside
C 15.83 461.1452 417 52,927 37,003 34,703 100

8 Dihydroxybenzoic acid hexoside A 1.67 153.0170 105 11,307 9,008 9,266 94
9 Feruloyl dihydroxybenzoic acid

hexoside
A 12.88 491.1199 50 1,736 1,462 2,137 36

10 Caffeoyl quinic acid A 4.26 353.0882 3,499 50,745 47,716 41,313 13
11 Feruloyl hexose A 5.4 355.1038 13,876 129,240 92,359 83,730 7
12 Dihydroferulic acid hexoside A 4.74 357.1195 10,772 48,579 33,555 34,210 4
13 Vanillic acid hexoside A 2.28 329.0898 90,929 236,429 176,961 211,144 2
14 Caffeoyl hexose A 4.09 341.0887 126,360 305,682 261,863 297,608 2
15 G(8-O-4)G(8-O-4)S(8-5)G A 15.13 779.2904 684 50 50 50 0.0731
16 S(e8-O-4)S(8-5)Gglycerol A 9.47 647.2289 12,863 387 709 35 0.0293
17 G(8-O-4)Gglycerol hexoside A 3.65 571.2014 7,851 429 61 59 0.0233
18 G(8-O-4)S(8-O-4)S(8-5)G A 16.29 809.3010 2,163 50 50 50 0.0231
19 SMe(t8-O-4)S(8-8)S A 19.88 657.2535 2,288 50 50 50 0.0218
20 G(8-O-4)S(8-O-4)G A 10.84 601.2276 10,845 57 311 188 0.0171
21 S(8-O-4)S(8-8)S(4-O-8)G A 17.91 839.3119 3,246 50 50 50 0.0154
22 G(8-O-4)G(8-O-4)G A 9.89 571.2171 5,416 104 50 50 0.0126
23 S(t8-O-4)S(8-8)S A 16.57 643.2380 13,169 180 122 69 0.0094
24 S(8-O-4)S(8-5)G A 14.64 613.2274 15,593 71 129 232 0.0092
25 S(8-O-4)Sglycerol A 4.64 469.1718 6,738 50 50 50 0.0074
26 H(8-O-4)S(8-5)Gglycerol A 9.31 587.2120 9,804 50 50 50 0.0051
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the exact sugar. We also recognized later that the iso-
lated fraction of syringyl lactic acid hexoside was con-
taminated with syringic acid glycoside and assigned
the peaks. The two structurally characterized com-
pounds, S9(8-8)S9 1 and syringyl lactic acid hexoside 2,
were identified here, to our knowledge for the first time
in plants, as deduced from searching the CAS database
(https://scifinder.cas.org/scifinder/login).
It was surprising that, among the 348 profiled com-

pounds with increased abundance, only one feature, S9
(8-8)S9 1, was composed of a hydroxycinnamaldehyde,
whereas we expected many others to be derived from
either coniferaldehyde or sinapaldehyde, the substrates
of CAD, in analogy with the accumulation of numerous
5-hydroxyconiferyl alcohol derivatives in COMT-
deficient plants (Vanholme et al., 2010b; Weng et al.,
2010). This suggested that many of them/z features that
we could not structurally resolve by MS fragmentation
might be more complex oxidative coupling products
from the coupling of hydroxycinnamaldehydes with
coniferyl and/or sinapyl alcohol. To investigate whether
additional oligolignol-containing units derived from

hydroxycinnamaldehydes were among the compounds
that accumulated in the hpCAD plants, various combi-
nations of horseradish peroxidase/hydrogen peroxide-
based dehydrogenation polymers (DHPs) were made
with coniferyl alcohol, sinapyl alcohol, coniferaldehyde,
and sinapaldehyde. UHPLC-MS analysis of the low-Mr
fraction resulting from these oxidative coupling assays
revealed amultitude of dimers and trimers (Supplemental
Table S5), resulting in a database of approximately
550 unique DHP dimers, trimers, and tetramers. Using R
(www.r-project.org), we automatically searched for the
presence of any of these oligomers, or derivatives thereof
(e.g. glucosides), in the phenolic profiles of the CAD1-
deficient poplar samples. However, except for S9(8-8)S9,
none of the coupling products detected in DHPs could be
detected in the hpCAD extracts (Table VI). In the oxidative
coupling assays, S9(8-8)S9 also coupled to coniferyl alcohol
or sinapaldehyde via an 8-O-4 linkage. However, these
trimers were below the detection limit in vivo (Table VI).
None of the many coupling products of coniferaldehyde
that were found in the DHPs were detected in the poplar
extracts of either hpCAD or the wild type.

Figure 5. Identification of syringyl lactic acid
hexoside by MS/MS and NMR. 2D 1H-13C corre-
lation HSQC NMR spectra of a chromatic fraction
of hpCAD xylem extracts containing syringyl lac-
tic acid hexoside (2) are shown. Syringic acid
hexoside appeared to be present in the same
chromatic fraction. The structural formulas of both
compounds are shown.

Table VI. Oxidative coupling assay

S9(8-8)S9-derived oligolignols in the oxidative coupling assays and in the metabolite profiles of hpCAD
are shown. The shorthand name is the unique identifier of the peak, resulting from merging the retention
time and m/z value. ND, Not detected.

Oligolignols Theoretical Mass
Shorthand Name

Oxidative Coupling Assays hpCAD

m/z

S9(8-8)S9 413.12 12.21_413.1246 m/z 12.39_413.1244 m/z
S9(8-8)S9(4-O-8)G 609.19 14.10_609.1971 m/z ND
S9(8-8)S9(4-O-8)S9 619.18 19.94_619.1811 m/z ND
S9(8-8)S9(4-O-8)S 639.21 ND ND
S9(8-8)S9(4-O-8)G(4-O-8)G 805.27 ND ND
S9(8-8)S9(4-O-8)G(5-8)G 787.26 ND ND
S9(8-8)S9(4-O-8)G(4-O-8)S9 815.25 ND ND
S9(8-8)S9(4-O-8)S9(4-O-8)S9 825.24 ND ND
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We also investigated whether p-coumaraldehyde,
coniferaldehyde, and sinapaldehyde, the substrates of
CAD, were present in the hpCAD lines, but all three
compounds remained below the detection limit in the
plant extracts.

Saccharification Efficiency

The hydrolysis of CW polysaccharides into primary
sugars, a process called saccharification, was deter-
mined for the three hpCAD lines and compared with
that of the wild type. Saccharifications were preceded
by a pretreatment to loosen the plant CW and, hence,
make the CW polysaccharides more accessible to en-
zymatic hydrolysis. Five different pretreatment con-
ditions were applied: no pretreatment, hot water,
acid, and two alkaline pretreatments (with different
concentrations of sodium hydroxide). As has been
noted previously, lignins from CAD-deficient plants,
even in hardwoods, are more readily solubilized and
extracted in alkali, in part due to their higher phenolic
contents (Lapierre et al., 1989). For saccharification,
an enzyme mixture containing multiple hydrolyzing
activities, including exo-1,4-b-glucanase, endo-1,4-
b-glucanase, hemicellulases, and b-glucosidase, was
used. Hence, both cellulose and hemicellulose poly-
mers were hydrolyzed, and the released Glc and Xyl
were measured and expressed as percentages of dry
weight. The released Glc was higher in all three
hpCAD lines compared with the wild type by up to
81% when alkaline pretreatments were applied (Fig.
6A; Supplemental Table S6), but the Glc release
remained comparable with that of the wild type for
other pretreatment conditions. Cellulose conversions
were calculated based on the amount of cellulose
(Table II) and the amount of Glc released upon sac-
charification (Supplemental Table S6). Because there
was no significant difference in cellulose content ob-
served for the hpCAD lines compared with the wild
type, the conclusions regarding cellulose conversion
were similar: only with alkaline pretreatments, cel-
lulose conversions were higher, from 27% in the wild
type up to 39% in hpCAD with a 6.25 mM NaOH pre-
treatment and from 34% in the wild type up to 61% in
hpCADwith a 62.5 mM NaOH pretreatment, all under
the same partial saccharification conditions (Fig. 6B;
Supplemental Table S6). The enzyme cocktail used in
the saccharification experiments contained both cel-
lulases and hemicellulases. Hemicelluloses account
for 27% to 29% of the CW (Table II) and contain on
average 10% to 13% Glc (Table II). Therefore, a part of
the improved saccharification yields for hpCAD pop-
lars has to be attributed to the hemicelluloses. The
amount of Xyl released from hemicellulosic polymers
was higher for almost every transgenic line and
treatment condition (Fig. 6C; Supplemental Table S6).
The highest increase, up to 153%, was observed with
hot water pretreatment, although the total release of
Xyl under these conditions remained low. Under

alkaline conditions, the wild type released on average
44% of the Xyl present in the hemicellulose fraction,
whereas the hpCAD lines released up to 61% (Supplemental
Table S6).

Figure 6. Saccharification yields. A, Average Glc release, expressed as
percentages of dry weight, for the different CAD1-deficient lines and the
wild type (WT; n = 5, each biological repeat measured in triplicate). B,
Cellulose conversion, expressed as percentages of cellulose, calculated
based on the amounts of released Glc and the quantified amount of
cellulose. C, Average Xyl release, expressed as percentages of dry
weight. The results are grouped per treatment condition, which is in-
dicated at the top of each graph. Error bars represent SD. Asterisks in-
dicate significant differences from the wild type within the same
treatment condition (Dunnett’s adjusted Student’s t test, P , 0.05).
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DISCUSSION

CAD converts hydroxycinnamaldehydes into hydroxy-
cinnamyl alcohols in the last step of the monolignol bio-
synthetic pathway. Previously, CAD was down-regulated
in poplar using sense and antisense strategies. The newly
generated CAD1-deficient poplar lines described here
were obtained by a 35S-driven hairpin RNAi strategy and
had residual CAD1 transcript levels of about 5%
(Supplemental Fig. S1B) and CAD activity of about 15%
(Supplemental Fig. S2B). This effective down-regulation is
in contrast with previous studies claiming that the 35S
promoter is not the most effective promoter for RNAi si-
lencing of secondary CW-related genes compared with
xylem-specific promoters such as the GT43B promoter
(Ratke et al., 2015). However, this apparent contradiction
might be explained by the specific nature of lignification,
which is under both cell-autonomous and non-cell-
autonomous control (Pesquet et al., 2013; Smith et al.,
2013, 2017). Indeed, the CAD gene is expressed in poplar
rays (Regan et al., 1999), and CAD protein has been lo-
calized in ray cells (Goffner et al., 1998; Šamaj et al., 1998).
It has been hypothesized thatmonolignols synthesized in
the ray cells diffuse toward the neighboring xylem cells
(Hawkins et al., 1997). Because the 35S promoter confers
strong expression in rays in secondary xylem (Nilsson
et al., 1996; Chen et al., 2000; Ratke et al., 2015), it is ex-
pected that the expression of PtaCAD1 is silenced in these
cells, reducing amajor source ofmonolignols destined for
lignification of the neighboring xylem cells.
The uniform and intense red coloration (Fig. 1A),

which was maintained over successive cycles of vege-
tative propagation, indicates that the selected transgenic
lines are stably down-regulated in CAD1. Nowadays,
even better techniques, such as genome editing using
CRISPR/Cas9, allow the generation of complete, stable,
and heritable knockouts (Zhou et al., 2015), but such
methods were not available at the outset of this study.

CAD1 Down-Regulation Results in the Incorporation of
Sinapaldehyde into the Lignin Polymer, But
Coniferaldehyde Has Another Fate

The hpCAD lines had a 10% lower lignin content
(Table II), and their lignin structures were dramatically
affected. The hpCAD samples displayed the hallmarks
of CAD deficiency (i.e. the increased frequency of free-
phenolic units and of hydroxycinnamaldehyde and
benzaldehyde units in lignins). In the case of poplars
and in agreement with previous results (Kim et al.,
2002; Lapierre et al., 2004), these additional aldehyde
units are mostly composed of sinapaldehyde and
syringaldehyde units, with little change noted in con-
iferaldehyde and vanillin units. In conjunction, the level
of sinapyl alcohol-derived S units was relatively more
reduced than the level of coniferyl alcohol-derived G
units (Table III; Supplemental Table S2). Consistent
with thioacidolysis data revealing the preferential ac-
cumulation of sinapaldehyde units in the lignins of
hpCAD poplar lines, the phenolic profiling results
showed a more than 24,000-fold accumulation of a

sinapaldehyde homodimer [S9(8-8)S9; compound 1 in
Table V and Supplemental Table S4]. Taken together,
these data suggest that sinapaldehyde in hpCAD lines
was at least partially oxidatively coupled into a dimer or
polymerized into the lignin, whereas coniferaldehyde
(which also was expected to be produced in higher
amounts, given the reduction of coniferyl alcohol-
derived G units in the lignin; Supplemental Table S2)
did not end up in the lignin and, thus, must have been
metabolized in a different way.

One possible explanation for why only sinapalde-
hyde, but not coniferaldehyde, is incorporated in the
lignin is the involvement of PtaCAD2 or other proteins
with CAD activity. PtaCAD2 is expressed at similar
levels to PtaCAD1 in the xylem of the P. tremula3P. alba
hybrid used here, as quantified using qRT-PCR
(Supplemental Fig. S1B). According to Sundell et al.
(2017), other genes sharing sequence similarity with
CAD1 and CAD2 also are expressed in poplar xylem,
albeit not as high as CAD1 and CAD2. Therefore, we
cannot exclude the possibility that PtaCAD2 or any
other CAD-like protein is responsible for the residual
15% CAD activity and that down-regulation of PtaCAD2
would result in a stronger accumulation of coniferaldehyde.
However, aside from the fact that only 15% of CAD activity
remained, the catalytic efficiency for coniferaldehyde of
the corresponding P. trichocarpa PtrCAD2 is much
lower than that of PtrCAD1 (Shi et al., 2010; Wang
et al., 2014), making this scenario questionable.

A more likely explanation is that coniferaldehyde is
metabolized in a different way. Insight into how con-
iferaldehyde is metabolized in the hpCAD lines was
provided by both lignin analysis and phenolic profiling.
The CAD1 down-regulation resulted in the accumula-
tion of dihydroferulic acid hexoside 5 and 12, feruloyl
dihydroxybenzoic acid hexoside 9, feruloyl quinic acid
4, feruloyl hydroxybenzyl hexoside 7, and feruloyl
hexose 11 in the xylem (Fig. 4; Table V; Supplemental
Table S4). The excess of coniferaldehyde, therefore, was
likely metabolized into ferulic acid rather than being
exported to the CW (Sibout et al., 2005). An oxidation
route for cinnamaldehydes to their corresponding car-
boxylic acids has been established in Arabidopsis
and is catalyzed by HYDROXYCINNAMALDEHYDE
DEHYDROGENASE/REDUCED EPIDERMAL
FLUORESCENCE1 (Goujon et al., 2003; Nair et al., 2004).
Transcriptomics in an Arabidopsis cad-c cad-d double
mutant showed higher expression of the corresponding
gene encoding this aldehyde dehydrogenase (Sibout et al.,
2005). The accumulation of dihydroferulic acid hexosides 5
and 12 can possibly be explained by the activity of an
alkenal DBR. The activities of an Arabidopsis DBR re-
ducing the C7-C8 double bond of p-coumaraldehyde and
coniferaldehyde, and an apple (Malus 3 domestica) DBR
reducing the double bond in p-coumaroyl-CoA and
feruloyl-CoA, have been shown by enzymatic assays
(Youn et al., 2006b; Ibdah et al., 2014). Vanillic acid hexo-
side 13 also accumulated in the CAD1-deficient poplars
(Table V). This benzenoid is derived via an as yet largely
unexplored chain-shortening pathway from feruloyl-CoA,
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the latter likely being derived from ferulic acid via
4-COUMARATE COENZYME A LIGASE activity
(Widhalm and Dudareva, 2015).

As compared with the ferulic acid derivative pools,
sinapic acid derivative pools were much more elevated
in the xylem of hpCAD lines (Table V): syringyl lactic
acid hexoside 2 and sinapic acid hexoside 3 accumu-
lated 8,650- and 488-fold, respectively. Syringyl lactic
acid and its aglycone have not yet been described as
plant metabolites and, consequently, nothing is known
about their biosynthesis. The structural similarity to
phenyl lactic acid and 4-hydroxyphenyl lactic acid
suggests that syringyl lactic acid could be formed from
these compounds: starting from 4-hydroxyphenyl lactic
acid, subsequent hydroxylations and methylations
would introduce the necessary methoxyl substituents
on the benzene ring to produce syringyl lactic acid. The
biosynthetic route from Tyr to 4-hydroxyphenyl lactic
acid has been described for plants and holds a trans-
amination followed by a reduction (Petersen et al.,
1993).

Alternatively, syringyl lactic acid might be synthe-
sized from sinapic acid; the high sinapic acid hexoside 3
levels support such a route. Mechanistically, the reac-
tion might be similar to the hydroxylation step during
a-oxidation of fatty acids (Hitchcock and Rose, 1971).
Opposite to the hydroxylation step in fatty acid
b-oxidation, a-oxidation-associated hydroxylation
occurs on a single bond rather than a double bond.
Thus, for this mechanism to operate, a prior double
bond reduction of sinapic acid to dihydrosinapic acid
(or from sinapaldehyde to dihydrosinapaldehyde
followed by its oxidation to dihydrosinapic acid) is
necessary, after which dihydrosinapic acid is hy-
droxylated to syringyl lactic acid. As stated above,
DBR enzymes from Arabidopsis and apple reducing
the C7-C8 double bond of phenylpropanoids have
been described (Youn et al., 2006b; Ibdah et al., 2014).

The observations that syringyl lactic acid hexoside 2
and sinapic acid hexoside 3 accumulated in the phe-
nolic pool, and that syringaldehyde appeared to accu-
mulate in the lignin (Table IV), could indicate that only
part of the sinapaldehyde ended up in the lignin, with a
part metabolized into sinapic acid and syringaldehyde,
via metabolic routes similar to those for coniferaldehyde.
Alternatively, sinapic acid andderivativesweremade via
parallel hydroxylation of their G-type homologs via
5-hydroxylation and 5-O-methyltransferase reactions
on the free acid at the cinnamoid/benzenoid levels
(e.g. from ferulic acid via 5-hydroxyferulic acid to
sinapic acid and from vanillin via 5-hydroxyvanillin to
syringaldehyde). The more than 100-fold increase in
p-coumaric acid hexosyl hexose 6 suggests a similar
conversion of p-coumaraldehyde to p-coumaric acid.
Caffeoyl quinic acid 10, caffeoyl hexose 14, and dihy-
droxybenzoic acid (protocatechuic acid) 8 are then
potentially made via p-coumaroyl-CoA (Fig. 4).

The suggested efficient conversion of cinnamalde-
hydes to cinnamic acids by a putative poplar HCALDH
homolog, followed by hexosylation to detoxify the

accumulating cinnamic acids, is in agreement with the
absence of any noticeable accumulation of glycosylated
oligolignols derived from the cinnamaldehyde’s cou-
pling with a normal monolignol. Indeed, we have
shown previously that, in Arabidopsis leaf protoplasts,
monolignols are coupled not only in the CW but also in
the cytoplasm, upon which the coupling products are
glycosylated for sequestration in the vacuole (Dima
et al., 2015). Also in Arabidopsis stems, glycosylation of
oligolignols is a commonly observed phenomenon, es-
pecially in plants perturbed in the lignin biosynthetic
pathway (Vanholme et al., 2010b, 2012b). In poplar
xylem, this process appears to be less common, al-
though a glycosylated oligolignol 20was detected with
low abundance among the metabolites in the hpCAD
lines (Table V).

Based on a predictive kinetic metabolic flux (PKMF)
model of the phenylpropanoid pathway, it has been
predicted that a reduction in CAD activity in poplar
would result in the accumulation of coniferaldehyde
and sinapaldehyde (Wang et al., 2014). However, the
PKMF model does not predict the increased fluxes ob-
served in hpCAD poplars toward other pathway inter-
mediates, such as ferulic acid and sinapic acid, that we
propose to be likely derived from the excess of free
cinnamaldehydes, nor toward metabolites outside the
core phenylpropanoid pathway, such as syringalde-
hyde, vanillic acid, dihydroferulic acid hexoside, or the
newly identified syringyl lactic acid hexoside (Tables III
and V). Our data show the relevance of broad phenolic
profiling (lignomics; Morreel et al., 2010b) in suggesting
metabolites and enzymes (e.g. HCALDH and DBR) as
input parameters into the current PKMF model of the
phenylpropanoid pathway to allow for a more accurate
prediction of the fluxes through this pathway.

Sinapaldehyde 8-8 Homodimerization Can Start the
Lignin Chain

The observation that the S9(8-8)S9 dimer 1 was the
most accumulating compound suggests that S9(8-8)S9
less readily allows further coupling with monolignols.
This was also observed in the oxidative coupling
assays, where only two trimers were detected in which
S9(8-8)S9was 4-O-8 coupledwith a coniferyl alcohol or a
sinapaldehyde. Part of the S9(8-8)S9, however, was
detected as a new structure in the lignin by NMR (Fig.
2A), suggesting that sinapaldehyde dimerization is a
way of starting lignin chains in the hpCAD lines. Lignin
chains in hardwoods start by monolignol dimerization,
producing either syringaresinol (that results in resinol
units C in the lignin) from 8-8-coupling of sinapyl al-
cohol (primarily) or a hydroxycinnamyl alcohol end
groupX1 from coniferyl or sinapyl alcohol coupling at its
8-position with coniferyl alcohol at its 5- or 4-O-position
(to result in phenylcoumaran B or b-ether A structures,
respectively; Fig. 2B). As noted in the aliphatic regions of
theNMR spectra (Fig. 2C), the normal resinol unitsC are
sharply reduced in the hpCAD lines, whereas the level of
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hydroxycinnamyl alcohol end groups X1 is increased
mildly. Again, as observed in the aldehyde region of the
NMR spectra (Fig. 2A), lignin chains also are apparently
started from sinapaldehyde 8-8 homodimerization, as
evidenced by the appearance of this new structure in the
lignin.

Repercussions of Syringaldehyde and Sinapaldehyde
Incorporation on Lignin Structure

The increased incorporation of syringaldehydes into
lignin has further repercussions on the structure of
lignin and its physicochemical properties (Table III).
Benzenoids lack an 8- (or b)-carbon; therefore, they can
only start a lignin polymer chain (Vanholme et al.,
2012a). Generally speaking, benzenoids could enter
into 5-5- or 4-O-5-coupling with a lignin oligomer/
polymer, in which the units still occupy terminal posi-
tions on the polymer (5-5-coupling is not possible for
syringaldehyde, as the C5 is methoxylated). In other
words, benzenoids cannot incorporate into the back-
bone of growing chains. The increased abundance of
syringaldehyde in hpCAD lines (Table III), together
with the reduced total lignin amount, implies that the
average lignin polymer chain in hpCAD lines is shorter
than that in the wild type. This hypothesis is supported
by the observation that the relative fraction of phenolic
end groups (detected as methylated thioacidolysis
products) was increased in hpCAD lines (Table IV).
The incorporation of sinapaldehyde into the lignin

(Fig. 2; Table III) resulted in structures and properties
that are predicted to be substantially different from
those derived from the canonical monolignols. When
monolignols incorporate via their b- or C8-position into
b-aryl ether structures, the quinonemethide intermediate
gets rearomatized via a nucleophilic attack. Generally, the
nucleophile is water and results in the formation of
an a-hydroxy functionality (Vanholme et al., 2012a).
However, when hydroxycinnamaldehydes incorpo-
rate, rearomatization by elimination of the acidic proton
on the C8-position (which is also termed the a-position
relative to the aldehyde functionality) outcompetes nucle-
ophilic addition. Thismechanism consequently leads to (1)
lignin with fewer hydroxyl functions (i.e. one aldehydic
carbonyl function for each hydroxycinnamaldehyde cou-
pled into a b-ether structure, as opposed to two hydroxyl
functions for canonical monolignols coupled into a b-ether
structure), and consequently lignin that is more hydro-
phobic, which may reduce its noncovalent associations
with hemicelluloses (Carmona et al., 2015). In addition, the
mechanism leads to (2) b-ether moieties with conjugated
g-carbonyl functionalities. Such structures are more prone
to alkaline and/or oxidative degradation as compared
with the typical b-ether moieties derived from canon-
ical monomers (Tsuji et al., 2015). Moreover, this
mechanism (3) also prevents the nucleophilic attack by
nucleophiles other than water (e.g. alcohol and car-
boxylic acid groups from hemicelluloses), thereby
avoiding the creation of benzyl ether or benzyl ester

bonds that putatively contribute to recalcitrant lignin-
carbohydrate complexes (Mottiar et al., 2016).

In summary, the lignin in hpCAD lines differs from
that in wild-type lignin by the substantial incorporation
of sinapaldehyde into the polymer. Lignification involv-
ing copolymerization ofmonolignolswith sinapaldehyde
results in seven characteristics that potentially influence
the physicochemical properties of the wood and that
could be of relevance for industrial processing of the
wood: (1) 10% less lignin; (2) shorter lignin polymer
chains with (3) a consequently higher proportion of free-
phenolic end groups, resulting in lignin that is more
alkali-soluble; (4) conjugated carbonyl functions that fa-
cilitate lignin cleavage under alkaline conditions; (5) a
more hydrophobic lignin (because the b-ether units,
for example, have two fewer hydroxyl groups per
unit); (6) the possibility of a weaker noncovalent as-
sociation with hemicelluloses; and possibly (7) lower
actual lignin-hemicellulose bonding, making the CW
more readily accessible.

CAD1 Down-Regulation Results in Improved
Saccharification after Alkaline Pretreatment

Although the hpCAD lines had ;10% less KL, the
saccharification efficiencies for hpCAD lineswere increased
compared with the wild type only when an alkaline pre-
treatment preceded the saccharification protocol. We ob-
served increased saccharification efficiencies ranging from
40% (hpCAD24, 6.25 mM NaOH) up to 81% (hpCAD4,
62.5 mM NaOH; Fig. 6A; Supplemental Table S6) in in-
complete digestion experiments aimed at determining
saccharification ease. Together with a similar cellulose
content for the hpCAD lines and thewild type, the cellulose
conversion increased from 27% in the wild type up to 39%
in hpCAD19 (6.25 mM NaOH) and from 34% in the wild
type up to 61% in hpCAD4 (62.5 mM NaOH; Fig. 6B;
Supplemental Table S6). When an acid pretreatment (with
sulfuric acid), hot water, or no pretreatment preceded the
saccharification step, the saccharification efficiencies (and
cellulose conversions) were similar for the hpCAD poplar
lines and the wild type. The same was observed in alfalfa,
where no increase in saccharification yield could be
detected in both untreated and sulfuric acid-pretreated
CAD-deficient plants (Jackson et al., 2008). In contrast,
and presumably largely because of the substantial CW
compositional differences between monocots and dicots
(Popper et al., 2011), CAD-deficient switchgrass showed
an increased saccharification efficiency (the ratio of sugars
released by enzymatic hydrolysis to the total sugars
available in the CW) of 19% to 89% without pretreatment
andof 19% to 44%with a similar sulfuric acidpretreatment
to that used in alfalfa (Fu et al., 2011). Also, CAD-deficient
maize stems showeda25% increased saccharificationyield
when no pretreatment was applied (Fornalé et al., 2012).

The enzyme mix that was used for saccharification
also contained hemicellulases, resulting in the release of
Xyl. Remarkably, and in contrast to the Glc release, the
amount of released Xyl during saccharification was
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increased for the hpCAD poplar lines compared with
the wild type, not only upon alkaline pretreatment but
upon every pretreatment that was applied (Fig. 6C;
Supplemental Table S6). The highest increase was
observedwith a hot water pretreatment (up to +153%);
however, the absolute amount of Xyl released with no
or hot water pretreatment remained low. The Xyl re-
leased upon saccharification with an acid pretreat-
ment resulted in equivalent amounts as upon alkaline
pretreatment (6.25mMNaOH). The higher Xyl releases
during saccharification of hpCAD-derived wood
samples could be explained in part by the hemicellu-
lose composition of the hpCAD poplars, which is
enriched in Xyl by ;3% (Table II). However, this in-
crease in Xyl content cannot explain the total increase.
Based on the shifts in lignin composition, a reduced
interaction between lignin and hemicelluloses was
predicted, both noncovalently and covalently, as
compared with the wild type, potentially explaining
the increased hemicellulose degradation. For indus-
trial bioethanol production, the Xyl sugars also can be
fermented into bioethanol (e.g. when using yeast ge-
netically engineered to ferment pentoses; Demeke
et al., 2013).

CAD1 Down-Regulation Does Not Affect Plant Yield
under Greenhouse Conditions

Although the lignin amount of hpCAD poplars was
reduced, and its structure heavily altered, the trees had
no biomass yield penalty when grown for 3.5 months in
the greenhouse (Table I). In contrast, yield penalties
have been observed previously in other plants in which
CAD activity was severely reduced. For example,
Arabidopsis cad-c cad-d double mutants were reported
to have shorter and weaker stems (Sibout et al., 2005).
Nevertheless, the hpCAD poplar lines will ultimately
need to be evaluated in a field trial to investigate
whether they can grow outdoors without a yield pen-
alty while maintaining the beneficial effects on sac-
charification efficiency. Environmental factors have
been shown previously to interact with CAD deficiency
in CAD-deficient M. truncatula: the phenotype of these
plants was equal to that of the wild type when grown at
ambient temperatures, but the plants were dwarfed
when grown at elevated temperatures (30°C; Zhao
et al., 2013). In contrast, down-regulating CAD in Ni-
cotiana attenuata produced plants with thin and struc-
turally unstable stems when grown in the greenhouse,
but the normal phenotype was restored when plants
were grown outdoors (Kaur et al., 2012). Hence, it is
important to investigate how the hpCAD poplars with
this level of lignin alteration will respond when grown
in the field, especially regarding biomass and bio-
ethanol yield. A field trial with the three lines described
here was established under a short-rotation culture
(VIB, 2013) to answer these questions and to provide
sufficient biomass for semi-industrial processing in a
pilot biorefinery.

MATERIALS AND METHODS

Generation of hpCAD Poplar Transgenic Lines

To prepare the binary vector for poplar transformation, the full-length
PtaCAD1 coding sequence from Populus tremula3 Populus alba (INRA 717-1B4),
corresponding to PtrCAD1 (Potri.009G095800.1) from Populus trichocarpa (99%
identity; Supplemental Fig. S1A), was first PCR amplified from CF233412
plasmid clone (Déjardin et al., 2004) with Pfx polymerase and the following
forward and reverse primers (59-CACCCTGGTGCCGCGCGGCAGCATGGG-
TAGCCTTGAAACA-39 and 59-TCAGGGAATAAGCTTGCTAC-39). The PCR
product was then cloned into the pENTR vector using the pENTR/D-TOPO
cloning kit (Invitrogen, Life Technologies) according to the manufacturer’s in-
structions to generate pENTR_CAD, an entry clone for the Gateway cloning
system (Invitrogen). The pENTR_CAD constructwas verified by sequencing. The
CAD1 coding sequence was then shuttled from pENTR_CAD to pHellsgate8
(Helliwell and Waterhouse, 2003) using Gateway LR Clonase. The generated
pHG8_CAD binary vector was suited for intron-spliced hairpin RNA-mediated
gene silencing. It was transferred into Agrobacterium tumefaciens strain C58
(pMP90) using triparental mating. Eighteen independent transgenic lines were
obtained fromA. tumefaciens-mediated transformation of the INRA clone 717-1B4,
according to Leplé et al. (1992).

Sequence Analysis and Protein Modeling

Homologs of PtaCAD1 were identified by BLAST from the P. tremula 3
P. alba 717-1B4 genome (http://aspendb.uga.edu/s717) using the PtaCAD1
coding sequence. Three-dimensional protein structures of both PtaCAD1 and
Pta_tCAD1 were generated using the crystal structure of AtCAD5 (Protein Data
Bank no. 2cf6) as a modeling template in the fully automated protein structure
homology-modeling server SWISS-MODEL (Youn et al., 2006a; Biasini et al., 2014).

Plant Material

The 18 transgenic lines and the wild type were micropropagated, acclima-
tized in vitro, and grown in three replicates for 3 months in the greenhouse. A
5-cm stem fragment was collected at the base of the plant for first phenotypic
screenings (xylem color and anatomy). These stem sections were photographed
with aZeiss Stemi 2000-C stereomicroscope.An additional 10-cm stem fragment
was debarked, and the xylem was scraped and ground in liquid nitrogen for
CAD activity assays.

Three CAD1-deficient lines (hpCAD4, hpCAD19, and hpCAD24) were chosen
and, together with the wild-type poplar, simultaneously micropropagated
in vitro to obtain 40 ramets of each line that were grown randomly in the
greenhouse. For metabolite profiling, stems of 10 ramets of the three hpCAD
lines and 30 ramets of the wild type were cut 10 cm above soil level after
3 months of growth. A basal 10-cm stem fragment was sampled and debarked.
Subsequently, the debarked stem samples were frozen immediately in liquid
nitrogen and stored at 270°C. Two weeks later (after 3.5 months of growth),
another five ramets per line were cut 10 cm above soil level. Height and fresh
weight were determined immediately after harvesting. The stemwas debarked,
air dried, ground, sieved to pass a mesh of 0.5 mm, and used for CW analyses,
NMR structural profiling, and saccharification assays. For microscopy pur-
poses, cross sections were made from three independent 4-month-old hpCAD
and wild-type poplars.

Assay for CAD Activity

Proteins were extracted from 200 mg of scraped developing xylem by
grinding for 1 min in 3 mL of ice-cold 100 mM Tris-HCl, pH 7.5, 2% (w/v)
polyethylene glycol 6000, 2% (w/v) polyvinylpolypyrrolidone, 200 mM sodium
ascorbate, and 5 mM DTT. After two centrifugations at 13,000 rpm at 4°C for
10 min, the proteins in the final supernatant were quantified using the Bradford
test (Bradford, 1976), and a calibration curve was prepared from BSA. CAD
activity was assayed at 30°C on 2 mg of extracted proteins in 350 mL of 100 mM

Tris-HCl, pH 8.8, 0.1 mM coniferyl alcohol, and 0.2 mM b-NADP. The reduction
of NADP in NADPH was followed at 405 nm on a Multiskan Spectrum.

qRT-PCR

Transcript levels of PtaCAD1 (corresponding to PtrCAD1 [Potri.009G095800.1]),
PtaCAD2 (corresponding to PtrCAD2 [Potri.016G078300.1]), and Pta_tCAD1
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(corresponding to Potri.001G30000.1) were determined in stems of 10-week-
old hpCAD and wild-type poplars using qRT-PCR. The top 50 cm of the stem
was removed, and the 10-cm stem piece below the cut was immediately
debarked and frozen in liquid nitrogen. Xylem was scraped, and total RNA
was isolated with the RNeasy Plant Mini Kit (Qiagen) and treated with
Ambion DNA-free (Life Technologies) to remove contamination with ge-
nomic DNA. A total of 1 mg was used as a template for the synthesis of cDNA
using the iScript cDNA Synthesis Kit (Bio-Rad). Samples were run in tripli-
cate on a LightCycler 480 Real-Time SYBR Green PCR System (Roche)
according to the manufacturer’s instructions. Fluorescence values were
exported from the LightCycler program, whereupon Ct values, normaliza-
tion factors, and primer efficiencies were calculated according to Ramakers
et al. (2003) using two reference genes: 18S (AF206999) and UBQ (BU879229;
Brunner et al., 2004). qRT-PCR primers are listed in Supplemental Figure S1C
(for PtaCAD1 and PtaCAD2) and Supplemental Figure S3B (for Pta_tCAD1).

Microscopy

Fresh 30-mm-thick transverse stem sections were prepared with a rotary
microtome (Leica RM 2155; Leica Microsystems) equipped with disposable
blades (Low Profile Sec35p; Microm). For laser scanning confocal microscopy,
the sections were mounted in fluoromount G medium between a slide and
coverslip and examinedwith a Zeiss LSM 700microscope with 2% laser energy.
The excitation wavelength of 488 nm and emissionwavelength of 495 to 700 nm
were used for imaging autofluorescence. Lignins were detected in stem cross
sections using Wiesner and Mäule stains. For Wiesner staining, which detects
cinnamaldehyde end groups on lignins, giving a pink-violet color, fresh sec-
tions were mounted directly on slides in phloroglucinol-HCl solution and ob-
served immediately with a light microscope (Leica DMR; Leica Microsystems)
with a Leica DFC 320 digital camera. For Mäule staining, which visualizes S
lignins, fresh cross sections were immersed in 1% (w/v) potassium perman-
ganate aqueous solution for 15min, followed by 10 s of water washing and then
30 s of treatment with 10% HCl. After a subsequent treatment with 5% (w/v)
sodium bicarbonate, a red-purple color developed. Sections were mounted on
slides in Aqueous Mount-quick Medium and observed using a light micro-
scope, as described above.

CW Analysis

KL was measured according to the standard procedure, starting from
350 mg of extractive-free CW residue (Méchin et al., 2014). The ASL was
measured spectrophotometrically as described previously (Dence, 1992). Lig-
nin composition was determined by thioacidolysis (Lapierre et al., 1999), and
the frequency of free-phenolic end groups in lignin was determined by thio-
acidolysis after exhaustive phenol methylation of the samples with diazo-
methane (Pitre et al., 2007). The determination of p-hydroxybenzoate esters and
other phenolics linked to poplar lignins was by mild alkaline hydrolysis
according to a previously published procedure (Lapierre et al., 1999). Crystal-
line cellulose content was determined by the Updegraff method, and compo-
sitional analyses of hemicelluloses was by the alditol-acetate assay (Foster et al.,
2010).

NMR

The whole-plant CW gel-state NMR samples in dimethyl sulfoxide-d6/
pyridine-d5 (4:1) were prepared as described previously (Kim et al., 2008; Kim
andRalph, 2010;Mansfield et al., 2012). NMR experimentswere performed on a
Bruker Biospin AVANCE 700-MHz spectrometer fitted with a cryogenically
cooled 5-mm quadruple-resonance 1H/31P/13C/15N QCI gradient probe
with inverse geometry (proton coils closest to the sample) as described
previously (Kim et al., 2008; Kim and Ralph, 2010; Mansfield et al., 2012).
Volume integration of contours in HSQC plots was performed on data
processed without linear prediction and used Bruker’s TopSpin 3.2 (Mac ver-
sion) software. Note that integrals are to be used for relative comparisons: they do
not represent true quantification and, in particular, end groups are substantially
overestimated (Mansfield et al., 2012). The peaks characteristic of the lignin
structures and their compositions were selected and estimated after the contour-
level adjustment to achieve optimal peak separation. Quantification was per-
formed forwild-type (four replicates) andCAD1-deficient (three replicates of each
line) poplars.

To confirm the identity of the S9(8-8)S9 dimer, this compoundwas chemically
synthesized by radical reactions in two different ways. (1) Sinapaldehyde (1 g,

4.81 mmol), acetone:water (20 mL:980 mL), horseradish peroxidase (5 mg), and
hydrogen peroxide (1%, 20 mL) were combined. (2) Sinapaldehyde (530 mg,
2.59 mmol) was dissolved in ethyl acetate (30 mL). Silver(I) oxide (720.7 mg,
3.11 mmol) was added, and the reaction mixture was stirred overnight at room
temperature. The mixture was filtered through a fine-sintered glass filter to
remove Ag and evaporated to give a red solid. Separation of the crude products
was performed on preparative thin-layer chromatography plates (CHCl3:ethyl
acetate, 1:1, v/v). The S9(8-8)S9 dehydrodimer was obtained as the major pro-
duct from both methods. The structure of S9(8-8)S9was confirmed by NMR: 1H
NMR (acetone-d6) d 9.67 (s, 2H, 9), 7.99 (br s, 2H, ArOH), 7.80 (s, 2H, 7), 7.03 (s,
4H, 2/6), 3.71 (s, 12H, OMe); 13C NMR (acetone-d6) d 192.7 (9), 153.0 (7), 148.6
(3/5), 140.0 (4), 134.7 (8), 126.0 (1), 109.0 (2/6), 56.5 (OMe).

Metabolomics

Debarked10-cmbasal stem fragments from3-month-old, greenhouse-grown
poplar were scraped (30–200 mg dry weight) with a scalpel, and the resulting
isolated xylem was ground using mortar and pestle. Liquid-liquid extraction of
the homogenized plant material was performed with 5 mL of methanol. Of the
supernatants, 1 mL was lyophilized and redissolved in 0.8 mL of milliQ water:
cyclohexane (1:1, v/v). The tubes were vortexed and centrifuged at 14,000 rpm
(20,000g) for 10 min. A 200-mL aliquot of the lower water phase was transferred
to an ultra-HPLC vial. A 15-mL aliquot of the water phase was injected on an
ultra-HPLC system (Waters Acquity UPLC) equipped with a BEH C18 column
(2.1 3 150 mm, 1.7 mm; Waters) and hyphenated to a time-of-flight mass
spectrometer (Synapt Q-Tof; Waters) using gradient elution. Buffer A was
composed of water containing 1% (v/v) acetonitrile and 0.1% (v/v) formic acid
(pH 3). Buffer B was composed of acetonitrile containing 1% (v/v) water and
0.1% (v/v) formic acid (pH 3). The following gradient was applied: 95% A for
0.1 min, decreased to 50% A in 30 min at a flow of 350 mL min21 and a column
temperature of 40°C. The autosampler temperature was maintained at 10°C.
ForMS analysis, the flowwas diverted to the mass spectrometer equipped with
an electrospray ionization source and lockspray interface for accurate mass
measurements. The MS source parameters were as follows: capillary voltage,
2.6 kV; sampling cone, 37 V; extraction cone, 3.5 V; source temperature, 120°C;
desolvation temperature, 400°C; cone gas flow, 50 L h21; and desolvation gas
flow, 550 L h21. The collision energy for the trap and transfer cells were 4 and
3 V, respectively. For data acquisition, the dynamic range enhancement mode
was activated. Full-scan data were recorded in negative centroid V-mode; the
mass range between m/z 100 and 1,000, with a scan speed of 0.2 s scan21, was
recorded with Masslynx software (Waters).

For structural elucidation, MS/MS was used. For MS/MS, all settings were
the same as in full MS, except the collision energy was ramped from 15 to 45 eV
in the trap and the scan time was set at 0.5 s. Leucin-enkephalin (250 pg mL21

solubilized in water:acetonitrile 1:1 [v/v] with 0.1% formic acid) was used for
the lock mass calibration, with scanning every 10 s with a scan time of 0.5 s.
Chromatograms were processed via Progenesis QI version 2.1 (Nonlinear Dy-
namics), yielding 7,521m/z features. Them/z features that were associated with
the same compound were grouped based on similar retention time and a high
correlation in abundances between the biological replicates (Morreel et al.,
2014), yielding 2,154 m/z feature groups. Normalization of the m/z feature a-
bundances was performed to the dry weight of the samples. The m/z features
that had average abundance lower than 500 in each of the four lines were fil-
tered away. All statistics were performed in R version 3.1.2 on arcsinh trans-
formed ion intensities. One-way ANOVA followed by Bonferroni posthoc tests
(P , 0.05 for each of the three transgenic lines) were performed with the lm
function and the pairwise.t.test function, respectively. An experiment-wise
significance threshold (P , 0.05) was computed using the qvalue package in
R. The m/z features for which the abundances were significantly different, and
for which the averaged fold change of the three transgenic lines was greater
than 2 or less than 0.5, were retained. This resulted in a list of 589 m/z features
(corresponding to 410 m/z feature groups), of which 508 (corresponding to
348 m/z feature groups) were higher and 81 (corresponding to 64 m/z feature
groups) were lower in abundance in the xylem of hpCAD lines than in the wild
type.

Compound Purification

Debarked stems of poplars grown for 3 months in the greenhouse were
homogenized using GRINDOMIX GM 200 (Retch). One liter of methanol was
added to 100 g of fresh plant material. A total of 500 mL of the supernatant was
lyophilized and redissolved in 11 mL of milliQ water:cyclohexane (1:1, v/v).
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Subsequently, 10 mL of the aqueous phase was injected onto a Waters Auto-
purification System (Waters) hyphenated to an Acquity QDa detector (Waters).
Reverse-phase separation was performed on a Sunfire C18 prep column (19 3
150 mm, 5 mm). Except for the flow (10 mL min21), solvent compositions,
gradient conditions, and column temperature were in agreement with those
used for metabolomics.

Oxidative Coupling Assays

The oxidative coupling assays were performed as described previously
(Niculaes et al., 2014). Coniferyl alcohol, sinapyl alcohol, coniferaldehyde, and
sinapaldehyde were incubated with horseradish peroxidase in all possible
combinations. The assays were initiated by adding hydrogen peroxide. After
incubation, the resulting combinatorial coupling products were subjected to
UHPLC-MS analysis as described above.

Saccharification Assay

Debarked poplar stemswere air dried, ground extensively using a Retsch
MM300 mixer mill (Retsch), and sieved to pass a mesh of 0.5 mm. Material
was weighed, and saccharification assays were performed using the iWALL
custom-designed robot (LabmanAutomation) as has beendescribed indetail
(Santoro et al., 2010). The dilute base pretreatment solutions consisted of
6.25 and 62.5 mM NaOH. The dilute acid pretreatment solution was 0.4 M

H2SO4, as described (Santoro et al., 2010). The conditions for the hot water
pretreatment were as similar as possible to the other pretreatments (i.e. 90°C
for 3 h).

Statistics

All statistics, unless specified, were performed using SAS Enterprise Guide
6 (SAS Institute). One-way ANOVA determinations followed by posthoc two-
sided Dunnett’s tests were applied to test for significant differences between the
transgenic lines and the wild type. Differences with a Dunnett adjusted P, 0.05
were considered significant.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers Potri.009G095800.
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