1,187 research outputs found

    Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    Get PDF
    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate

    Use of Screen-printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine

    Get PDF
    © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim The utilisation of screen-printing technology allows for a mass scalable approach for the production of electrochemical screen-printed electrodes (SPEs) and the presence of a redox mediator can add new possibilities to the electrochemical properties of the SPEs. Among the materials used as redox mediators, cyanidoferrates polymers can be used for electro-oxidation of cysteine. In this work, two monomers, namely, [Fe(CN) 6 ] 4− and [Fe(CN) 5 NH 3 ] 3− were used to produce Prussian blue (PB) and Prussian blue-Ammine (PB-Ammine), respectively. In addition, two modification methods were compared, firstly via a drop-casting and secondly by the incorporation of these materials into a printable ink. The SPE modified by PB-Ammine (drop-casting) exhibits the highest electroactive area, however the highest heterogeneous rate constant was found with the SPE modified by PB-Ammine that was incorporated into the ink. The highest value of the constant of electro-oxidation of cysteine and lowest limit of detection was also observed in the SPE modified by PB incorporated into the ink. These studies suggest that the electrocatalytic properties of SPE modified by PB and PB-Ammine are dependent upon the availability of Fe 3+ catalytic sites and the increased kinetics of the chemical reaction between the catalytic sites and the analyte

    Trace manganese detection via differential pulse cathodic stripping voltammetry using disposable electrodes: Additively manufactured nanographite electrochemical sensing platforms

    Get PDF
    Additive manufacturing is a promising technology for the rapid and economical fabrication of portable electroanalytical devices. In this paper we seek to determine how our bespoke additive manufacturing feedstocks act as the basis of an electrochemical sensing platform towards the sensing of manganese(ii) via differential pulse cathodic stripping voltammetry (DPCSV), despite the electrode comprising only 25 wt% nanographite and 75 wt% plastic (polylactic acid). The Additive Manufactured electrodes (AM-electrodes) are also critically compared to graphite screen-printed macroelectrodes (SPEs) and both are explored in model and real tap-water samples. Using optimized DPCSV conditions at pH 6.0, the analytical outputs using the AM-electrodes are as follows: limit of detection, 1.6 × 10-9 mol L-1 (0.09 μg L-1); analytical sensitivity, 3.4 μA V μmol-1 L; linear range, 9.1 × 10-9 mol L-1 to 2.7 × 10-6 mol L-1 (R2 = 0.998); and RSD 4.9% (N = 10 for 1 μmol L-1). These results are compared to screen-printed macroelectrodes (SPEs) giving comparable results providing confidence that AM-electrodes can provide the basis for useful electrochemical sensing platforms. The proposed electroanalytical method (both AM-electrodes and SPEs) is shown to be successfully applied for the determination of manganese(ii) in tap water samples and in the analysis of a certified material (drinking water). The proposed method is feasible to be applied for in-loco analyses due to the portability of sensing; in addition, the use of AM-printed electrodes is attractive due to their low cost

    High yield synthesis of hydroxyapatite (HAP) and Palladium Doped HAP via a wet chemical synthetic route

    Get PDF
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. A novel procedure for the synthesis of both hydroxyapatite (HAP) and palladium doped HAP via a wet chemical precipitation method is described herein. X-ray Diffraction (XRD), Raman Spectroscopy, Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS) and Fourier Transform Infrared (FT-IR) Spectroscopy are utilised to characterise the synthesised material’s morphology, structure and crystallinity. The developed synthetic protocol produces high purity HAP with an average yield of 83.7 (±0.10)% and an average particle size of 58.2 (±0.98) nm, such synthesis has been achieved at room temperature and within a time period of less than 24 h. Additionally, in order to enhance the overall conductivity of the material, a range of Pd (2, 4 and 6 wt %) metal doped HAP has been synthesised, characterised and, for the first time, applied towards the competitive electrocatalytic detection of hydrazine, exhibiting a linear range of 50–400 μM with a limit of detection (3σ) of 30 µM

    Review of parameterisation and a novel database (LiionDB) for continuum Li-ion battery models

    Get PDF
    The Doyle–Fuller–Newman (DFN) framework is the most popular physics-based continuum-level description of the chemical and dynamical internal processes within operating lithium-ion-battery cells. With sufficient flexibility to model a wide range of battery designs and chemistries, the framework provides an effective balance between detail, needed to capture key microscopic mechanisms, and simplicity, needed to solve the governing equations at a relatively modest computational expense. Nevertheless, implementation requires values of numerous model parameters, whose ranges of applicability, estimation, and validation pose challenges. This article provides a critical review of the methods to measure or infer parameters for use within the isothermal DFN framework, discusses their advantages or disadvantages, and clarifies limitations attached to their practical application. Accompanying this discussion we provide a searchable database, available at www.liiondb.com, which aggregates many parameters and state functions for the standard DFN model that have been reported in the literature

    Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    Get PDF
    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments

    Electro-Magnetic Nucleon Form Factors and their Spectral Functions in Soliton Models

    Full text link
    It is demonstrated that in simple soliton models essential features of the electro-magnetic nucleon form factors observed over three orders of magnitude in momentum transfer tt are naturally reproduced. The analysis shows that three basic ingredients are required: an extended object, partial coupling to vector mesons, and relativistic recoil corrections. We use for the extended object the standard skyrmion, one vector meson propagator for both isospin channels, and the relativistic boost to the Breit frame. Continuation to timelike tt leads to quite stable results for the spectral functions in the regime from the 2- or 3-pion threshold to about two rho masses. Especially the onset of the continuous part of the spectral functions at threshold can be reliably determined and there are strong analogies to the results imposed on dispersion theoretic approaches by the unitarity constraint.Comment: 24 pages, (RevTeX), 5 PS-figures; Data points in fig.2 and corresponding references added. Final version, to be published in Z.Physik

    Macrophage Subset Sensitivity to Endotoxin Tolerisation by Porphyromonas gingivalis

    Get PDF
    Macrophages (MΦs) determine oral mucosal responses; mediating tolerance to commensal microbes and food whilst maintaining the capacity to activate immune defences to pathogens. MΦ responses are determined by both differentiation and activation stimuli, giving rise to two distinct subsets; pro-inflammatory M1- and anti-inflammatory/regulatory M2- MΦs. M2-like subsets predominate tolerance induction whereas M1 MΦs predominate in inflammatory pathologies, mediating destructive inflammatory mechanisms, such as those in chronic P.gingivalis (PG) periodontal infection. MΦ responses can be suppressed to benefit either the host or the pathogen. Chronic stimulation by bacterial pathogen associated molecular patterns (PAMPs), such as LPS, is well established to induce tolerance. The aim of this study was to investigate the susceptibility of MΦ subsets to suppression by P. gingivalis. CD14hi and CD14lo M1- and M2-like MΦs were generated in vitro from the THP-1 monocyte cell line by differentiation with PMA and vitamin D3, respectively. MΦ subsets were pre-treated with heat-killed PG (HKPG) and PG-LPS prior to stimulation by bacterial PAMPs. Modulation of inflammation was measured by TNFα, IL-1β, IL-6, IL-10 ELISA and NFκB activation by reporter gene assay. HKPG and PG-LPS differentially suppress PAMP-induced TNFα, IL-6 and IL-10 but fail to suppress IL-1β expression in M1 and M2 MΦs. In addition, P.gingivalis suppressed NFκB activation in CD14lo and CD14hi M2 regulatory MΦs and CD14lo M1 MΦs whereas CD14hi M1 pro-inflammatory MΦs were refractory to suppression. In conclusion, P.gingivalis selectively tolerises regulatory M2 MΦs with little effect on pro-inflammatory CD14hi M1 MΦs; differential suppression facilitating immunopathology at the expense of immunity

    Recent Advances in Electrosynthesized Molecularly Imprinted Polymer Sensing Platforms for Bioanalyte Detection

    Get PDF
    The accurate detection of biological materials has remained at the forefront of scientific research for decades. This includes the detection of molecules, proteins, and bacteria. Biomimetic sensors look to replicate the sensitive and selective mechanisms that are found in biological systems and incorporate these properties into functional sensing platforms. Molecularly imprinted polymers (MIPs) are synthetic receptors that can form high affinity binding sites complementary to the specific analyte of interest. They utilise the shape, size, and functionality to produce sensitive and selective recognition of target analytes. One route of synthesizing MIPs is through electropolymerization, utilising predominantly constant potential methods or cyclic voltammetry. This methodology allows for the formation of a polymer directly onto the surface of a transducer. The thickness, morphology, and topography of the films can be manipulated specifically for each template. Recently, numerous reviews have been published in the production and sensing applications of MIPs; however, there are few reports on the use of electrosynthesized MIPs (eMIPs). The number of publications and citations utilising eMIPs is increasing each year, with a review produced on the topic in 2012. This review will primarily focus on advancements from 2012 in the use of eMIPs in sensing platforms for the detection of biologically relevant materials, including the development of increased polymer layer dimensions for whole bacteria detection and the use of mixed monomer compositions to increase selectivity toward analytes
    corecore