140 research outputs found

    Nuclear structure in 95,97Ru nuclei

    Get PDF
    The high-spin level structures of the nuclei 95,97Ru have been studied via the 92Mo(6Li,p2n)95Ru and 93Nb(7Li,3n)97Ru reactions, using γ-γ coincidence, γ-W(θ), and pulsed-beam-γ measurements. Shell-model calculations of energy levels and B(E2) values for 95Ru have been performed and compared with the experimentally observed levels and the measured (21/2)+ and (17/2)+ lifetimes. A collective ΔJ=2 band has been identified with the 1h11/2 neutron state in 97Ru, and discussed in the context of the general nature of collectivity in nuclei outside the N=50 closed shell. No ΔJ=1 band associated with the 1g9/2 neutron-hole intruder state was found in either of the N=51,53 Ru nuclei, as observed previously for the 1g9/2 proton-hole intruder states in the Z=51 Sb and Z=53 I nuclei

    Effect of side branch flow upon physiological indices in coronary artery disease

    Get PDF
    Recent efforts have demonstrated the ability of computational models to predict fractional flow reserve from coronary artery imaging without the need for invasive instrumentation. However, these models include only larger coronary arteries as smaller side branches cannot be resolved and are therefore neglected. The goal of this study was to evaluate the impact of neglecting the flow to these side branches when computing angiography-derived fractional flow reserve (vFFR) and indices of volumetric coronary artery blood flow. To compensate for the flow to side branches, a leakage function based upon vessel taper (Murray’s Law) was added to a previously developed computational model of coronary blood flow. The augmented model with a leakage function (1Dleaky) and the original model (1D) were then applied to predict FFR as well as inlet and outlet flow in 146 arteries from 80 patients who underwent invasive coronary angiography and FFR measurement. The results show that the leakage function did not significantly change the vFFR but did significantly impact the estimated volumetric flow rate and predicted coronary flow reserve. As both procedures achieved similar predictive accuracy of vFFR despite large differences in coronary blood flow, these results suggest careful consideration of the application of this index for quantitatively assessing flow

    A hybrid version of the tilted axis cranking model and its application to ^{128}Ba

    Full text link
    A hybrid version the deformed nuclear potential is suggested, which combines a spherical Woods Saxon potential with a deformed Nilsson potential. It removes the problems of the conventional Nilsson potential in the mass 130 region. Based on the hybrid potential, tilted axis cranking calculations are carried out for the magnetic dipole band in ^{128}Ba.Comment: 10 pages 6 figure

    Effect of γ Softness on the Stability of Chiral Geometry: Spectroscopy of 106Ag

    Get PDF
    A study of the nucleus 106Ag has revealed the presence of two strongly coupled negative-parity rotational bands up to the 19- and 20- states, respectively, which cross each other at spin I~14. The data suggest that near the crossover point the bands correspond to different shapes, which is different to the behavior expected from a pair of chiral bands. Inspection of the properties of these bands indicates a triaxial and a planar nature of rotation for the two structures. Possible causes for this may be understood in terms of a shape transformation resulting from the large degree of softness of 106Ag. These data, along with the systematics of the odd-odd structures in the mass 100 region, suggest that softness has marked implications for the phenomenon of nuclear chirality

    Magnetic and intruder rotational bands in (113)In

    Get PDF
    ©2005 American Physical SocietyExcited states in ¹¹³In were populated via the reactions ¹⁰⁰Mo(¹⁸O,p4n)¹¹³In and ¹¹⁰Pd(7Li,4n)¹¹³In. The two known ΔJ = 2 intruder bands, based on the πg7/2 ⊗ d5/2 and πh11/2 orbitals, have been extended by 8¯h to spins (49/2+)¯h and (55/2−)¯h, respectively. The previous finding of three sequences of ΔJ = 1 γ -ray transitions has been confirmed. A self-consistent cranked shell-model calculation gives a good description of the contrasting alignment patterns of the two ΔJ = 2 intruder bands. The intruder bands, the known sequences ofM1 transitions, and spherical levels together represent a coexistence of three different excitation modes in this nucleus.S. Naguleswaran, R. S. Chakrawarthy, U. Garg, K. L. Lamkin, G. Smith, J. C. Walpe, A. Galindo-Uribarri, V. P. Janzen, D. C. Radford, R. Kaczarowski, D. B. Fossan, D. R. Lafosse, P. Vaska, Ch. Droste, T. Morek, S. Pilotte, J. DeGraaf, T. Drake, and R. Wys

    Candidate chiral twin bands in the odd-odd nucleus 132 Cs : Exploring the limits of chirality in the mass A ≈ 130 region

    Get PDF
    High-spin states in the doubly odd N=77N=77 nucleus 132Cs{}^{132}\mathrm{Cs} have been studied. The known positive-parity structures have been extended. \ensuremath{\gamma}-ray linear-polarization and angular-correlation measurements have been performed to establish the spin and parity assignment of these structures. A new chiral partner of the \ensuremath{\pi}{h}_{11/2}\ensuremath{\bigotimes}\ensuremath{\nu}{h}_{11/2} band has been proposed. Three-dimensional tilted axis cranking model calculations have been performed and compared with the experimental results
    corecore