11 research outputs found
Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon
Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressure xenon gas. This would require carpet functionality in regimes at higher pressures than have been previously reported, implying correspondingly larger electrode voltages than in existing systems. This mode of operation appears plausible for contemporary RF-carpet geometries due to the higher predicted breakdown strength of high pressure xenon relative to low pressure helium, the working medium in most existing RF carpet devices. In this paper we present the first measurements of the high voltage dielectric strength of xenon gas at high pressure and at the relevant RF frequencies for ion transport (in the 10 MHz range), as well as new DC and RF measurements of the dielectric strengths of high pressure argon and helium gases at small gap sizes. We find breakdown voltages that are compatible with stable RF carpet operation given the gas, pressure, voltage, materials and geometry of interest
A Compact Dication Source for Ba Tagging and Heavy Metal Ion Sensor Development
We present a tunable metal ion beam that delivers controllable ion currents
in the picoamp range for testing of dry-phase ion sensors. Ion beams are formed
by sequential atomic evaporation and single or multiple electron impact
ionization, followed by acceleration into a sensing region. Controllability of
the ionic charge state is achieved through tuning of electrode potentials that
influence the retention time in the ionization region. Barium, lead, and cobalt
samples have been used to test the system, with ion currents identified and
quantified using a quadrupole mass analyzer. Realization of a clean
ion beam within a bench-top system represents an important
technical advance toward the development and characterization of barium tagging
systems for neutrinoless double beta decay searches in xenon gas. This system
also provides a testbed for investigation of novel ion sensing methodologies
for environmental assay applications, with dication beams of Pb and
Cd also demonstrated for this purpose
Long-term risks for kidney donors
Clinical epidemiolog
Reflectance and fluorescence characteristics of PTFE coated with TPB at visible, UV, and VUV as a function of thickness
Abstract:
Polytetrafluoroethylene (PTFE) is an excellent diffuse reflector widely used in light collection systems for particle physics experiments. In noble element systems, it is often coated with tetraphenyl butadiene (TPB) to allow detection of vacuum ultraviolet scintillation light. In this work this dependence is investigated for PTFE coated with TPB in air for light of wavelengths of 200 nm, 260 nm, and 450 nm. The results show that TPB-coated PTFE has a reflectance of approximately 92% for thicknesses ranging from 5 mm to 10 mm at 450 nm, with negligible variation as a function of thickness within this range. A cross-check of these results using an argon chamber supports the conclusion that the change in thickness from 5 mm to 10 mm does not affect significantly the light response at 128 nm. Our results indicate that pieces of TPB-coated PTFE thinner than the typical 10 mm can be used in particle physics detectors without compromising the light signal