3,394 research outputs found

    Influence of a Large Free Stream Disturbance Level on Dynamics of a Jet in a Cross Flow

    Get PDF
    An experiment to study the physical agents that are responsible for the jet turning into the streamwise direction, and the mixing of the jet and the cross stream fluid in the case of a jet in a cross flow is discussed

    Free stream turbulence and density ratio effects on the interaction region of a jet in a cross flow

    Get PDF
    Jets of low temperature air are introduced into the aft sections of gas turbine combustors for the purpose of cooling the high temperature gases and quenching the combustion reactions. Research studies, motivated by this complex flow field, have been executed by introducing a heated jet into the cross stream of a wind tunnel. The investigation by Kamotani and Greber stands as a prime example of such investigations and it serves as the principal reference for the present study. The low disturbance level of the cross stream, in their study and in similar research investigations, is compatible with an interest in identifying the basic features of this flow field. The influence of the prototypes' strongly disturbed cross flow is not, however, made apparent in these prior investigations

    The use of digital techniques to examine the intermittent region of a turbulent jet

    Get PDF
    Voltage signals, sampled at a high rate in the intermittent region of a round jet, are analyzed to provide instantaneous velocity vector information and measures of the vorticity and dissipation scales. A clustering routine to assess the feasibility of using the voltage readings to define the vortical, nonvortical state of the flow is also utilized. The results indicate that the clustering routine is partially successful; more sophisticated discrimination techniques will be required for a complete specification

    Preliminary study of tug-glider freight systems utilizing a Boeing 747 as the tug

    Get PDF
    Performance of the tug-glider system was severely limited by ground run. In most cases studied, additional engines were necessary. Except at short ranges for which additional payload were carried in the tow plane, the productivity of the basic aircraft was degraded by a reduction in cruise speed necessitated by the glider drag. Excessive aspect ratios did not improve system performance because of the increase in glider wing weight. Powered gliders using a tow plane only for takeoff and climb had the potential for a major reduction in fuel consumption. Uncertainty of restrictive regulatory action and the apparently increased airborne investment per unit productivity are obstacles to commercial development

    Static stability and control characteristics of two large-dihedral right triangular pyramid lifting reentry configurations at a Mach number of 3.05

    Get PDF
    Static stability and control characteristics of dihedral right triangular pyramid lifting reentry vehicle configuration

    Effects of nonlinear aerodynamics and static aeroelasticity on mission performance calculations for a fighter aircraft

    Get PDF
    During conceptual design studies of advanced aircraft, the usual practice is to use linear theory to calculate the aerodynamic characteristics of candidate rigid (nonflexible) geometric external shapes. Recent developments and improvements in computational methods, especially computational fluid dynamics (CFD), provide significantly improved capability to generate detailed analysis data for the use of all disciplines involved in the evaluation of a proposed aircraft design. A multidisciplinary application of such analysis methods to calculate the effects of nonlinear aerodynamics and static aeroelasticity on the mission performance of a fighter aircraft concept is described. The aircraft configuration selected for study was defined in a previous study using linear aerodynamics and rigid geometry. The results from the previous study are used as a basis of comparison for the data generated herein. Aerodynamic characteristics are calculated using two different nonlinear theories, potential flow and rotational (Euler) flow. The aerodynamic calculations are performed in an iterative procedure with an equivalent plate structural analysis method to obtain lift and drag data for a flexible (nonrigid) aircraft. These static aeroelastic data are then used in calculating the combat and mission performance characteristics of the aircraft

    Value of journalism in the high school curriculum

    Get PDF

    Trade Studies Relating to a Long Range Mach 2.6 Supercruiser

    Get PDF
    A systems study was conducted on an aircraft concept, representative of a supersonic-cruise military aircraft (supercruiser). The study results indicate that supersonic ranges in excess of 4000 n.mi. at a Mach number of 2.62 are possible with a 500 lbf class aircraft. Trade studies, to determine the sensitivity of supersonic range to parameters which would improve maneuverability, indicate that thrust-weight ratios of as much as 0.5 can be used without significantly decreasing supersonic range; however, increasing the thrust-weight ratio to 1.0 decreases the range capability by about 1100 n.mi. The range penalty for increasing the aircraft limit load-factor from 4.0 to 9.0 is about 500 n.mi. The increased fuel volume of several configurations improved the supersonic range capability by about 1200 n.mi. but, due to associated losses in supersonic L/D, had an insignificant effect on the range at a Mach number of 2.62

    Assessment of Variable-cycle Engines for Mach 2.7 Supersonic Transports

    Get PDF
    Three proposed SCAR propulsion systems in terms of aircraft range for a fixed payload and take-off gross weight with a design cruise Mach number 2.7 are evaluated. The effects of various noise and operational restraints are determined and sensitivities to some of the more important performance variables are presented for the most probable design noise and operational restraint case. Critical areas requiring new or improved technology for each cycle are delineated

    Conceptual study of an advanced supersonic technology transport (AST-107) for transpacific range using low-bypass-ratio turbofan engines

    Get PDF
    An advanced supersonic technology configuration concept designated the AST-107, using a low bypass ratio turbofan engine, is described and analyzed. The aircraft had provisions for 273 passengers arranged five abreast. The cruise Mach number was 2.62. The mission range for the AST-107 was 8.48 Mm (4576 n.mi.) and an average lift drag ratio of 9.15 during cruise was achieved. The available lateral control was not sufficient for the required 15.4 m/s (30 kt) crosswind landing condition, and a crosswind landing gear or a significant reduction in dihedral effect would be necessary to meet this requirement. The lowest computed noise levels, including a mechanical suppressor noise reduction of 3 EPNdB at the flyover and sideline monitoring stations, were 110.3 EPNdB (sideline noise), 113.1 EPNdB (centerline noise) and 110.5 EPNdB (approach noise)
    corecore