28 research outputs found

    Top-loading Small-sample Calorimeters for Measurements as a Function of Magnetic Field Angle

    Get PDF
    In quasi-low-dimensional systems, the existence of a particular physical state and the temperature and magnetic-field-dependence of its phase boundary often strongly depends on magnetic field orientation. To investigate magnetic field orientation dependent phase transitions in these materials, we have developed rotatable miniature and sub-miniature sample-in-vacuum calorimeters that operate in dc magnetic fields up to 18 and 45 tesla. The calorimeters cover the temperature range from below 0.1 K to above 10 K; they are able rotate a full 360 degrees relative to the applied magnetic field while remaining at base temperature. Samples are typically ontheorderof1mginmassandupto2mm2 x0.5mminvolume

    Physical Dependence of the Sensitivity and Room-Temperature Stability of AuxGe1-x Thin Film Resistive Thermometers on Annealing Conditions

    Get PDF
    The reported nearly constant temperature sensitivity of appropriately annealed polycrystalline AuxGe1-x thin films at cryogenic temperatures would appear to make them promising materials for low mass, rapid thermal response resistive thermometers, but their adoption has been limited by difficulties in fabrication and uncertainties in annealing. In this work, we present a method of fabrication and annealing which allows control of the two most important parameters for these films: the room-temperature resistivity ĻRT and the temperature sensitivity Ī·(T), where Ī· ā‰” -d In R/d In T. We find that the dependence of ĻRT on total anneal duration t for xā‰ˆ0.18 is given by ĻRT=Ļāˆž[1-Aexp(-t/Ļ„)], where the limiting room-temperature resistivity Ļāˆž, the annealing coefficient A, and relaxation time Ļ„ are annealing temperature dependent parameters. The dependence of ĻRT and temperature calibration Ļ(T) on anneal duration can be minimized by annealing above 250 Ā°C. Like ĻRT, the sensitivity Ī·(T) also depends on annealing temperature, with higher annealing temperatures corresponding to lower cryogenic sensitivities. In all cases Ī·(T) can be well described by a polynomial expansion in In T from room temperature down to at least 2 K

    Wide Range Thin-Film Ceramic Metal-Alloy Thermometers with Low Magnetoresistance

    Get PDF
    Many thermal measurements in high magnetic fields require thermometers that are sensitive over a wide temperature range, are low mass, have a rapid thermal response, and have a minimal, easily correctable magnetoresistance. Here we report the development of a new granular-metal oxide ceramic composite (cermet) for this purpose formed by co-sputtering of the metallic alloy nichrome Ni0.8Cr0.2 and the insulator silcon dioxide SiO2. The resulting thin films are sensitive enough to be used from room temperature down to below 100 mK in magnetic fields up to at least 35 tesla

    Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above The Paramagnetic Limit

    Get PDF
    We report the first magneto-caloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic "FFLO" superconducting state first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor Īŗ\kappa - (BEDT-TTF)2_2Cu(NCS)2_2, as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit HpH_p for traditional superconductivity is to a higher entropy superconducting phase uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave (SDW) ordering in the high field superconducting phase. The phase diagram determined from our measurements --- including the observation of a phase transition into the FFLO phase at HpH_p --- is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments, but is in disagreement with the only previous calorimetric report.Comment: 5 pages, 5 figure

    Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above The Paramagnetic Limit

    Get PDF
    We report the first magnetocaloric and calorimetric observations of a magnetic-field-induced phase transition within a superconducting state to the long-sought exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superconducting state, first predicted over 50 years ago. Through the combination of bulk thermodynamic calorimetric and magnetocaloric measurements in the organic superconductor Īŗāˆ’(BEDTāˆ’TTF)2Cu(NCS)2 as a function of temperature, magnetic field strength, and magnetic field orientation, we establish for the first time that this field-induced first-order phase transition at the paramagnetic limit Hp is a transition to a higher-entropy superconducting phase, uniquely characteristic of the FFLO state. We also establish that this high-field superconducting state displays the bulk paramagnetic ordering of spin domains required of the FFLO state. These results rule out the alternate possibility of spin-density wave ordering in the high-field superconducting phase. The phase diagram determined from our measurementsā€”including the observation of a phase transition into the FFLO phase at Hpā€”is in good agreement with recent NMR results and our own earlier tunnel-diode magnetic penetration depth experiments but is in disagreement with the only previous calorimetric report

    Evolution of magnetic field induced ordering in the layered quantum Heisenberg triangular-lattice antiferromagnet Ba\u3csub\u3e3\u3c/sub\u3e CoSb\u3csub\u3e2\u3c/sub\u3e O\u3csub\u3e9\u3c/sub\u3e

    Get PDF
    Quantum fluctuations in the effective spin- 1/2 layered triangular-lattice quantum Heisenberg antiferromagnet Ba3CoSb2O9 lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane, including a celebrated collinear ā€œup-up-downā€ spin ordering with magnetization equal to 1/3 of the saturation magnetization over an extended field range. Theoretically unresolved, however, are the effects of interlayer antiferromagnetic coupling and transverse magnetic fields on the ground states of this system. Additional magnetic field induced phase transitions are theoretically expected and in some cases have been experimentally observed, but details regarding their number, location, and physical character appear inconsistent with the predictions of existing models. Conversely, an absence of experimental measurements as a function of magnetic-field orientation has left other key predictions of these models untested. To address these issues, we have used specific heat, neutron diffraction, thermal conductivity, and magnetic torque measurements to map out the phase diagram as a function of magnetic field intensity and orientation relative to the crystallographic ab plane. For H||ab, we have discovered an additional magnetic field induced phase transition at low temperature and an unexpected tetracritical point in the high-field phase diagram, which coupled with the apparent second-order nature of the phase transitions eliminates several theoretically proposed spin structures for the high-field phases. Our calorimetric measurements as a function of magnetic field orientation are in general agreement with theory for field-orientation angles close to plane parallel (H||a) but diverge at angles near plane perpendicular; a predicted convergence of two phase boundaries at finite angle and a corresponding change in the order of the field induced phase transition are not observed experimentally. Our results emphasize the role of interlayer coupling in selecting and stabilizing field induced phases, provide guidance on the nature of the magnetic order in each phase, and reveal the need for new physics to account for the nature of magnetic ordering in this archetypal two-dimensional spin- 1/2 triangular-lattice quantum Heisenberg antiferromagnet

    Evolution of Magnetic-Field-Induced Ordering in the Layered Structure Quantum Heisenberg Triangular-Lattice Antiferromagnet Ba\u3csub\u3e3\u3c/sub\u3eCoSb\u3csub\u3e2\u3c/sub\u3eO\u3csub\u3e9\u3c/sub\u3e

    Get PDF
    Quantum fluctuations in the effective spin-1/2 layered structure triangular-lattice quantum Heisenberg antiferromagnet Ba3CoSb2O9 lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane, including a celebrated collinear ā€˜up-up-downā€™ spin ordering with magnetization equal to 1/3 of the saturation magnetization over an extended field range. Theoretically unresolved, however, are the effects of interlayer antferromagnetic coupling and transverse magnetic fields on the ground states of this system. Additional magnetic-field-induced phase transitions are theoretically expected and in some cases have been experimentally observed, but details regarding their number, location, and physical character appear inconsistent with the predictions of existing models. Conversely, an absence of experimental measurements as a function of magnetic-field orientation has left other key predictions of these models untested. To address these issues, we have used specific heat, neutron diffraction, thermal conductivity, and magnetic torque measurements to map out the phase diagram as a function of magnetic field intensity and orientation relative to the crystallographic ab plane. For H||ab, we have discovered an additional, previously unreported magnetic-field-induced phase transition at low temperature and an unexpected tetracritical point in the high field phase diagram, which ā€” coupled with the apparent second-order nature of the phase transitions ā€” eliminates several theoretically proposed spin structures for the high field phases. Our calorimetric measurements as a function of magnetic field orientation are in general agreement with theory for field-orientation angles close to plane parallel (H||a) but diverge at angles near plane perpendicular; a predicted convergence of two phase boundaries at finite angle and a corresponding change in the order of the field induced phase transition is not observed experimentally. Our results emphasize the role of interlayer coupling in selecting and stabilizing field-induced phases, provide new guidance into the nature of the magnetic order in each phase, and reveal the need for new physics to account for the nature of magnetic ordering in this archetypal 2D spin-1/2 triangular lattice quantum Heisenberg antiferromagnet

    Specific ion channels contribute to key elements of pathology during secondary degeneration following neurotrauma

    Get PDF
    Background: Following partial injury to the central nervous system, cells beyond the initial injury site undergo secondary degeneration, exacerbating loss of neurons, compact myelin and function. Changes in Ca 2+ flux are associated with metabolic and structural changes, but it is not yet clear how flux through specific ion channels contributes to the various pathologies. Here, partial optic nerve transection in adult female rats was used to model secondary degeneration. Treatment with combinations of three ion channel inhibitors was used as a tool to investigate which elements of oxidative and structural damage related to long term functional outcomes. The inhibitors employed were the voltage gated Ca 2+ channel inhibitor Lomerizine (Lom), the Ca 2+ permeable AMPA receptor inhibitor YM872 and the P2X 7 receptor inhibitor oxATP. Results: Following partial optic nerve transection, hyper-phosphorylation of Tau and acetylated tubulin immunoreactivity were increased, and Nogo-A immunoreactivity was decreased, indicating that axonal changes occurred acutely. All combinations of ion channel inhibitors reduced hyper-phosphorylation of Tau and increased Nogo-A immunoreactivity at day 3 after injury. However, only Lom/oxATP or all three inhibitors in combination significantly reduced acetylated tubulin immunoreactivity. Most combinations of ion channel inhibitors were effective in restoring the lengths of the paranode and the paranodal gap, indicative of the length of the node of Ranvier, following injury. However, only all three inhibitors in combination restored to normal Ankyrin G length at the node of Ranvier. Similarly, HNE immunoreactivity and loss of oligodendrocyte precursor cells were only limited by treatment with all three ion channel inhibitors in combination. Conclusions: Data indicate that inhibiting any of a range of ion channels preserves certain elements of axon and node structure and limits some oxidative damage following injury, whereas ionic flux through all three channels must be inhibited to prevent lipid peroxidation and preserve Ankyrin G distribution and OPCs

    Why the Earth is Warming. Carbon Cycles, Bathtubs, and You!

    No full text
    A Sigma Xi lunchtime talk by Professor Nathanael Fortune, Department of Physics. Part of the Year on Climate Change\u27s Climate 101 series
    corecore