Top-loading Small-sample Calorimeters for Measurements as a Function of Magnetic Field Angle

Abstract

In quasi-low-dimensional systems, the existence of a particular physical state and the temperature and magnetic-field-dependence of its phase boundary often strongly depends on magnetic field orientation. To investigate magnetic field orientation dependent phase transitions in these materials, we have developed rotatable miniature and sub-miniature sample-in-vacuum calorimeters that operate in dc magnetic fields up to 18 and 45 tesla. The calorimeters cover the temperature range from below 0.1 K to above 10 K; they are able rotate a full 360 degrees relative to the applied magnetic field while remaining at base temperature. Samples are typically ontheorderof1mginmassandupto2mm2 x0.5mminvolume

    Similar works