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Top-loading small-sample calorimeters for

measurements as a function of magnetic field angle
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1 Department of Physics, Smith College, College Lane, Northampton MA 01063, USA
2 National High Magnetic Field Laboratory, Florida State University, 1800 E. Paul Dirac
Road, Tallahassee FL 32310, USA

E-mail: nfortune@smith.edu

Abstract. In quasi-low-dimensional systems, the existence of a particular physical state and
the temperature and magnetic-field-dependence of its phase boundary often strongly depends on
magnetic field orientation. To investigate magnetic field orientation dependent phase transitions
in these materials, we have developed rotatable miniature and sub-miniature sample-in-vacuum
calorimeters that operate in dc magnetic fields up to 18 and 45 tesla. The calorimeters cover
the temperature range from below 0.1 K to above 10 K; they are able rotate a full 360 degrees
relative to the applied magnetic field while remaining at base temperature. Samples are typically
on the order of 1 mg in mass and up to 2 mm2 x 0.5 mm in volume.

1. Introduction
The ability to rotate a sample relative to an applied magnet field offers a number of advantages
for high field, low temperature specific heat and magnetocaloric measurements, including (1)
more accurate alignment of the field along one or more crystal axes [1, 2, 3], (2) the opportunity
to investigate strongly field-orientation-dependent novel superconducting and magnetic phases
[4, 5], and (3) a method of establishing the gap structure of anisotropic superconducting ground
states [6, 7, 8]. Field-orientation-dependent calorimetric measurements are especially useful
for the study of layered structure and/or quasi-low dimensional materials. Recent examples
include layered-structure heavy-fermion superconductors [2, 9, 10, 11, 12] and quasi-2D molecular
superconductors [13, 14, 15]. In our experiments, we use a pair of calorimeters designed
to fit inside the National High Magnetic Field Laboratory (NHMFL) top-loading dilution
refrigerator single-axis rotating sample probes [16]. The dilution refrigerators have a cooling
power of approximately 400µW at 0.1 K and a maximum cooling power of 4 mW; the very-
low friction rotating stages at the bottom of the probes allow for a full 360 degrees of rotation
(with a resolution of 0.020◦) at base temperature. The SCM1 dil fridge incorporates an 18 T
superconducting magnet; the PDF portable dilution refrigerator fits inside the NHMFL’s 32 mm
bore 36 T resistive and 45T hybrid magnets. The calorimeters can be used for field-dependent
magnetocaloric [17], ac calorimetric [18] and thermal-relaxation calorimetric [19] measurements
at temperatures between 0.1 K and 10 K. Samples are typically on the order of 1 mg in mass
and up to 2 mm2 x 0.5 mm in volume.
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2. Calorimeter Design and Performance
2.1. Vacuum constraints
Our measurements require the sample to be in vacuum even though the housing is immersed in
liquid helium (and is exposed to He vapor during the entire loading process). We accomplish
this by compressing an indium gasket between matching step edges in the calorimeter base and
cap [2] at room temperature, resulting in a superfluid-He leak-tight seal. A photo of the interior
of a PDF calorimeter cap (with indium gasket resting on the interior step edge) is shown in
figure 1, a top view of the calorimeter assembly, platform, base and step edge is shown in figure
2, and a close up view of the calorimeter platform and sample assembly is shown in figure 3. A
locknut threads into the cap behind the base, drawing the pieces together as it advances.

Figure 1. PDF calorimeter
cap interior, showing sample
chamber, step edge, indium
gasket, and internal threads.

Figure 2. Top view of tem-
perature regulated platform,
and Ag sample thermometer/
spacer, and heater frames.

Figure 3. side view of PDF
calorimeter platform and the
heater/sample/thermometer
sample assembly (& frames).

A vacuum is formed below 30 K by cryopumping of the air inside the housing [1]. The absence
of a leak at low temperature is readily checked by measuring the heater power required to raise
the interior temperature controlled platform well above that of the external cryogenic bath.

2.2. Space constraints
The calorimeter needs to (1) fit within the rotator body and (2) freely rotate 360◦ inside the
mixing chamber of the dilution refrigerator. To accomplish this, we require that no part of
the calorimeter (including leads) extend beyond the outer radius of the tip of the top loading
probe at any point during the rotation. For a cylindrical calorimeter of diameter φ and length L
rotating about a horizontal axis within a vertically aligned cylinder of diameter d, this requires
that L <

√
d2 − φ2. For the PDF rotator probe (with φ = 7.5mm), L ≤ 12mm (including room

for leads). The alignment of the calorimeter within the rotator body can checked by sliding a
tight-fitting clear plastic tube over the probe end and rotating the calorimeter 360◦.

Once the external diameter is known, the largest possible inner diameter for the calorimeter
cap is set by the minimum wall thicknesses of the indium gasket without fracturing of the housing
or threads. For our PDF calorimeter constructed out of Stycast 1266 epoxy, the inner diameter
of the cap is 4.2 mm (0.165 in). In practice, this limits the effective diameter of the PDF
calorimeter sample assembly, supporting frames, and calorimeter platform (including sensors
and wiring) to 3.5 mm (0.140 in), half what is available in the SCM calorimeter [2]. In that
earlier design, the sample assembly is attached to a single 2.5 mm inner diameter (3.5 mm outer
diameter) circular saphhire frame, surrounded by electrical leads heat sunk to the 7 mm diameter
Ag platform. The reduced interior space available in the PDF calorimeter prompted us to try
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adifferent design: in this new calorimeter, we mount each component of the sample assembly
sample heater, sample, and sample thermometer on a separate frame with integrated electrical
contacts, then flip the orientation of the sample assembly by 90◦ relative to the calorimeter’s
longitudinal axis, as shown in figure 3. This gives us a 2 mm diameter sample space (compared
to 2.5 mm before); the 3 frame design can accommodate samples up to 0.5 mm in thickness.

2.3. Thermal constraints
In these calorimeters, the sample heater, sample, and thermometer are weakly thermally linked
through two sets of electrical leads to a temperature controlled platform (inside the vacuum
space) as shown in figure 3; the phosphor bronze electrical leads and stainless steel support post
passing through the base of the calorimeter serve as the thermal link between the platform and
the cryogenic bath. The platform heater power PPH required to raise the platform temperature
Ts a specific amount above the bath temperature Tb depends on the mean thermal conductance
K̄ of the platform to bath thermal link over that temperature range:

PPH =

∫ Tp

Tb

K (T ) dT = K̄∆T (1)

where K(T ) depends on the choice of materials and Tb depends on the fridge’s cooling power.
From a practical standpoint, there are 3 key constraints on PPH and hence K(T ): (1) stable

PID temperature regulation for Tp ≥ 0.1 K, (2) quick recovery of the dilution refrigerator for
Tp ≤ 4 K and (3) the ability to reach Tp = 10 K when neeed. In our operating environment,
this requires PPH & 20nW at Tp = 0.1 K, PPH ≤ 400µW at Tp = 4 K, and PPH ≤ 4mW
at Tp = 10 K. As shown in figure 4, the measured dependences of Tp on PPH satisfy these 3
key constraints for both calorimeters. Moreover, by scaling the cross-sectional area of the leads
passing through the calorimeter base to match the reduction in calorimeter length, we are also
able to closely match the qualitiative and quantitative dependence of Tp on PPH for the two
calorimeters. We find that in both cases, Tp is well-described by the following power law function

T = T0 +A(P0 + P )n (2)

with n . 0.5. A and n depend only on the calorimeter; P0 and T0 also depend on the fridge.

3. Temperature Calibration in Magnetic Field
Prior to cross-calibration, the sample and platform thermometers were repeatedly thermally
cycled between room temperature and 4.2 K (after mounting inside the calorimeter). Thermal
cycling was deemed complete once both the room temperature and low temperature equilibrium
values remained unchanged for 10 consecutive cycles (for a total of 60 cycles). The thermometers
were cross-calibrated in zero field against a LakeShore CX1010SD Cernox between 0.1 K and 10
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Figure 4. Platform temperature Tp as a
function of platform heater power PPH for the
45 tesla PDF and 18 tesla SCM field-rotatable
small sample calorimeters. The calorimeters
are designed for measurements between 0.1 K
and 10 K. A heater power of 400 µW brings
the interior to 4.2 K while the mixing chamber
remains below 100 mK, allowing for easier and
faster temperature regulation of the platform.

27th International Conference on Low Temperature Physics (LT27) IOP Publishing
Journal of Physics: Conference Series 568 (2014) 032008 doi:10.1088/1742-6596/568/3/032008

3



K and an Entropy Cryogenics Type D RuOx between 0.050 K and 7.5 K. This data was used
to fit the temperature dependence of each resistive sensor to the Chebyshev function

logR(T,B) =
N∑

n=0

cn(B)tn(x) (3)

for B = 0, where x is a function of log T [20]. A set of platform heater power sweeps in
fixed magnetic fields (starting from the same refrigerator base temperature) then allowed us to
determine the fit coefficients A, n, T0, and P0 in Eq. 2 and the magnetic field dependence of
cn(B) in Eq. 3. Thermomolecular-corrected measurements of 3He vapor pressure [21, 22, 23]
and sensor resistance were used to test the calibrations in liquid 3He between 0.4 K and 1.4 K
in magnetic fields up to 36 T.

4. Experimental Results
Angle-dependent calorimetric measurements by our group were the first to demonstrate the
existence of a field-induced phase transition into a magnetically modulated phase within the
superconducting state of the layered-structure heavy fermion CeCoIn5 [2, 9].
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As shown in Figs. 5, 6, and 7, the transition to the field-induced superconducting phase occurs
for a narrow range of magnetic field at temperatures below 0.35 K when the field is directed along
the [110] axis (parallel to the layers), but is quickly extinguished as the magnetic field is rotated
out of the plane towards [001]. This may represent ’FFLO’ enhancement of superconductivity
due to the formation of electron spin domains; another interpretation attributes this field-angle-
dependent phase transition to the onset of spin-density wave ordering [12].

More recently, we have investigated the field-angle dependence of magnetic-field-induced
phases in a number of frustrated triangular-lattice S = 1

2 quantum Heisenberg antiferromagnets
with weak xy anisotropy, including Ba3CoSb2O9, Cs2CuCl4 and Cs2CuBr4 [24]. Three magnetic
phases are expected [25], each corresponding to a different spin arrangement: a low field ’Y’
phase, an intermediate ’up - up - down’ phase, and a high field ’V’ phase. In angle-dependent
measurements up to 36 T on Ba3CoSb2O9, we have discovered (1) that the ’Y’ and ’V’ phases
split into alternating and non-alternating co-planar subphases, (2) that contrary to previous
reports, multiple field-induced phases occur for H ‖ c as well, and (3) that the field-induced
phases seen for these two orientations are in fact related to each other. The angle-dependence
of these field-induced antiferromagnetic phases at 0.350 K is shown in Fig. 8. Details will be
published elsewhere.
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Figure 8. The angle-dependence of field-
induced antiferromagnetic phases for field ro-
tation from H‖a (θ = 0◦) to H‖c (θ = 90◦)
for Ba3CoSb2O9, an S = 1

2 triangular-lattice
Heisenberg antiferromagnet. The lowest and
highest phases of the expected three phases —
a ’Y’ phase, an ’uud’ phase, and a ’V’ phase
— split into alternating and non-alternating co-
planar subphases in this system. The solid lines
are guides to the eye indicating the evolution
of each phase with field-angle; the dashed line
represents the saturation field of 32.5 tesla.
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