2,881 research outputs found

    Center clusters in the Yang-Mills vacuum

    Full text link
    Properties of local Polyakov loops for SU(2) and SU(3) lattice gauge theory at finite temperature are analyzed. We show that spatial clusters can be identified where the local Polyakov loops have values close to the same center element. For a suitable definition of these clusters the deconfinement transition can be characterized by the onset of percolation in one of the center sectors. The analysis is repeated for different resolution scales of the lattice and we argue that the center clusters have a continuum limit.Comment: Table added. Final version to appear in JHE

    Distributed Graph Clustering using Modularity and Map Equation

    Full text link
    We study large-scale, distributed graph clustering. Given an undirected graph, our objective is to partition the nodes into disjoint sets called clusters. A cluster should contain many internal edges while being sparsely connected to other clusters. In the context of a social network, a cluster could be a group of friends. Modularity and map equation are established formalizations of this internally-dense-externally-sparse principle. We present two versions of a simple distributed algorithm to optimize both measures. They are based on Thrill, a distributed big data processing framework that implements an extended MapReduce model. The algorithms for the two measures, DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality measures is straight-forward. We conduct an extensive experimental study on real-world graphs and on synthetic benchmark graphs with up to 68 billion edges. Our algorithms are fast while detecting clusterings similar to those detected by other sequential, parallel and distributed clustering algorithms. Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more details, more results; v2: extended experiments to include comparison with competing algorithms, shortened for submission to Euro-Par 201

    Stable and Efficient Structures for the Content Production and Consumption in Information Communities

    Full text link
    Real-world information communities exhibit inherent structures that characterize a system that is stable and efficient for content production and consumption. In this paper, we study such structures through mathematical modelling and analysis. We formulate a generic model of a community in which each member decides how they allocate their time between content production and consumption with the objective of maximizing their individual reward. We define the community system as "stable and efficient" when a Nash equilibrium is reached while the social welfare of the community is maximized. We investigate the conditions for forming a stable and efficient community under two variations of the model representing different internal relational structures of the community. Our analysis results show that the structure with "a small core of celebrity producers" is the optimally stable and efficient for a community. These analysis results provide possible explanations to the sociological observations such as "the Law of the Few" and also provide insights into how to effectively build and maintain the structure of information communities.Comment: 21 page

    Critical Droplets and Phase Transitions in Two Dimensions

    Full text link
    In two space dimensions, the percolation point of the pure-site clusters of the Ising model coincides with the critical point T_c of the thermal transition and the percolation exponents belong to a special universality class. By introducing a bond probability p_B<1, the corresponding site-bond clusters keep on percolating at T_c and the exponents do not change, until p_B=p_CK=1-exp(-2J/kT): for this special expression of the bond weight the critical percolation exponents switch to the 2D Ising universality class. We show here that the result is valid for a wide class of bidimensional models with a continuous magnetization transition: there is a critical bond probability p_c such that, for any p_B>=p_c, the onset of percolation of the site-bond clusters coincides with the critical point of the thermal transition. The percolation exponents are the same for p_c<p_B<=1 but, for p_B=p_c, they suddenly change to the thermal exponents, so that the corresponding clusters are critical droplets of the phase transition. Our result is based on Monte Carlo simulations of various systems near criticality.Comment: Final version for publication, minor changes, figures adde

    Implementation of the Quantum Fourier Transform

    Get PDF
    The quantum Fourier transform (QFT) has been implemented on a three bit nuclear magnetic resonance (NMR) quantum computer, providing a first step towards the realization of Shor's factoring and other quantum algorithms. Implementation of the QFT is presented with fidelity measures, and state tomography. Experimentally realizing the QFT is a clear demonstration of NMR's ability to control quantum systems.Comment: 6 pages, 2 figure

    Testing Cluster Structure of Graphs

    Full text link
    We study the problem of recognizing the cluster structure of a graph in the framework of property testing in the bounded degree model. Given a parameter ε\varepsilon, a dd-bounded degree graph is defined to be (k,ϕ)(k, \phi)-clusterable, if it can be partitioned into no more than kk parts, such that the (inner) conductance of the induced subgraph on each part is at least ϕ\phi and the (outer) conductance of each part is at most cd,kε4ϕ2c_{d,k}\varepsilon^4\phi^2, where cd,kc_{d,k} depends only on d,kd,k. Our main result is a sublinear algorithm with the running time O~(npoly(ϕ,k,1/ε))\widetilde{O}(\sqrt{n}\cdot\mathrm{poly}(\phi,k,1/\varepsilon)) that takes as input a graph with maximum degree bounded by dd, parameters kk, ϕ\phi, ε\varepsilon, and with probability at least 23\frac23, accepts the graph if it is (k,ϕ)(k,\phi)-clusterable and rejects the graph if it is ε\varepsilon-far from (k,ϕ)(k, \phi^*)-clusterable for ϕ=cd,kϕ2ε4logn\phi^* = c'_{d,k}\frac{\phi^2 \varepsilon^4}{\log n}, where cd,kc'_{d,k} depends only on d,kd,k. By the lower bound of Ω(n)\Omega(\sqrt{n}) on the number of queries needed for testing graph expansion, which corresponds to k=1k=1 in our problem, our algorithm is asymptotically optimal up to polylogarithmic factors.Comment: Full version of STOC 201

    Solution of the Bohr hamiltonian for soft triaxial nuclei

    Get PDF
    The Bohr-Mottelson model is solved for a generic soft triaxial nucleus, separating the Bohr hamiltonian exactly and using a number of different model-potentials: a displaced harmonic oscillator in γ\gamma, which is solved with an approximated algebraic technique, and Coulomb/Kratzer, harmonic/Davidson and infinite square well potentials in β\beta, which are solved exactly. In each case we derive analytic expressions for the eigenenergies which are then used to calculate energy spectra. Here we study the chain of osmium isotopes and we compare our results with experimental information and previous calculations.Comment: 13 pages, 9 figure

    The macro-behavior of agents' opinion under the influence of an external field

    Full text link
    In this paper, a model about the evolution of opinion on small world networks is proposed. We studied the macro-behavior of the agents' opinion and the relative change rate as time elapses. The external field was found to play an important role in making the opinion s(t)s(t) balance or increase, and without the influence of the external field, the relative change rate γ(t)\gamma(t) shows a nonlinear increasing behavior as time runs. What's more, this nonlinear increasing behavior is independent of the initial condition, the strength of the external field and the time that we cancel the external field. Maybe the results can reflect some phenomenon in our society, such as the function of the macro-control in China or the Mass Media in our society.Comment: 8 pages, 3 figure

    Outflow Dynamics in Modeling Oligopoly Markets: The Case of the Mobile Telecommunications Market in Poland

    Get PDF
    In this paper we introduce two models of opinion dynamics in oligopoly markets and apply them to a situation, where a new entrant challenges two incumbents of the same size. The models differ in the way the two forces influencing consumer choice -- (local) social interactions and (global) advertising -- interact. We study the general behavior of the models using the Mean Field Approach and Monte Carlo simulations and calibrate the models to data from the Polish telecommunications market. For one of the models criticality is observed -- below a certain critical level of advertising the market approaches a lock-in situation, where one market leader dominates the market and all other brands disappear. Interestingly, for both models the best fits to real data are obtained for conformity level p(0.3,0.4)p \in (0.3,0.4). This agrees very well with the conformity level found by Solomon Asch in his famous social experiment

    Exploratory topic modeling with distributional semantics

    Full text link
    As we continue to collect and store textual data in a multitude of domains, we are regularly confronted with material whose largely unknown thematic structure we want to uncover. With unsupervised, exploratory analysis, no prior knowledge about the content is required and highly open-ended tasks can be supported. In the past few years, probabilistic topic modeling has emerged as a popular approach to this problem. Nevertheless, the representation of the latent topics as aggregations of semi-coherent terms limits their interpretability and level of detail. This paper presents an alternative approach to topic modeling that maps topics as a network for exploration, based on distributional semantics using learned word vectors. From the granular level of terms and their semantic similarity relations global topic structures emerge as clustered regions and gradients of concepts. Moreover, the paper discusses the visual interactive representation of the topic map, which plays an important role in supporting its exploration.Comment: Conference: The Fourteenth International Symposium on Intelligent Data Analysis (IDA 2015
    corecore