Abstract

Properties of local Polyakov loops for SU(2) and SU(3) lattice gauge theory at finite temperature are analyzed. We show that spatial clusters can be identified where the local Polyakov loops have values close to the same center element. For a suitable definition of these clusters the deconfinement transition can be characterized by the onset of percolation in one of the center sectors. The analysis is repeated for different resolution scales of the lattice and we argue that the center clusters have a continuum limit.Comment: Table added. Final version to appear in JHE

    Similar works

    Full text

    thumbnail-image

    Available Versions