50 research outputs found

    Differential hypertrophic effects of cardiotrophin-1 on adult cardiomyocytes from normotensive and spontaneously hypertensive rats

    Get PDF
    Cardiotrophin-1 (CT-1) produces longitudinal elongation of neonatal cardiomyocytes, but its effects in adult cardiomyocytes are not known. Recent observations indicate that CT-1 may be involved in pressure overload left ventricular hypertrophy (LVH). We investigated whether the hypertrophic effects of CT-1 are different in cardiomyocytes isolated from adult normotensive and spontaneously hypertensive rats (SHR). Hypertrophy was evaluated by planimetry and confocal microscopy, contractile proteins were quantified by Western blotting and real-time RT-PCR, and intracellular pathways were analyzed with specific chemical inhibitors. CT-1 increased c-fos and ANP expression (p<0.01) and cell area (p<0.01) in cardiomyocytes from both rat strains. In Wistar cells, CT-1 augmented cell length (p<0.01) but did not modify either the transverse diameter or cell depth. In SHR cells, CT-1 increased cell length (p<0.05), cell width (p<0.01) and cell depth, augmented the expression of myosin light chain-2v (MLC-2v) and skeletal alpha-actin (p<0.01) and enhanced MLC-2v phosphorylation (p<0.01). The blockade of gp130 or LIFR abolished CT-1-induced growth in the two cell types. All distinct effects observed in cardiomyocytes from SHR were mediated by STAT3. Baseline angiotensinogen expression was higher in SHR cells, and CT-1 induced a 1.7-fold and 3.2-fold increase of angiotensinogen mRNA in cardiomyocytes from Wistar rats and SHR respectively. In addition, AT1 blockade inhibited the specific effects of CT-1 in SHR cells. Finally, ex vivo determinations revealed that adult SHR exhibited enhanced myocardial CT-1 (mRNA and protein, p<0.01), increased cell width (p<0.01) and concentric LVH compared with pre-hypertensive SHR. These findings reveal a specific cell-broadening effect of CT-1 in cardiomyocytes from adult SHR and suggest that the hypertensive phenotype of these cells may influence the hypertrophic effects of CT-1, probably by means of an exaggerated induction of angiotensinogen expression. We suggest that CT-1 might facilitate LVH in genetic hypertension through a cross-talk with the renin-angiotensin system

    Polymorphisms and promoter overactivity of the p22(phox) gene in vascular smooth muscle cells from spontaneously hypertensive rats

    Get PDF
    In a previous study, we found that the p22(phox) subunit of the NADH/NADPH oxidase is overexpressed in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHRs) with enhanced vascular production of superoxide anion ((.)O(2)(-)). Thus, we have investigated whether changes in the sequence or activity of the promoter region of p22(phox) gene are present in SHRs. To carry out this analysis, first of all, we characterized the rat gene structure and promoter region for the p22(phox) subunit. The p22(phox) gene spans approximately 10 kb and contains 6 exons and 5 introns. Primer extension analysis indicated the transcriptional start site 100 bp upstream from the translational start site. The immediate promoter region of the p22(phox) gene does not contain a TATA box, but there are a CCAC box and putative recognition sites for nuclear factors, such as SP1, gamma-interferon, and nuclear factor-kappaB. Using reporter-gene transfection analysis, we found that this promoter was functional in VSMCs. Furthermore, we observed that p22(phox) promoter activity was significantly higher in VSMCs from SHRs than from normotensive Wistar-Kyoto rats. In addition, we found that there were 5 polymorphisms in the sequence of p22(phox) promoter between Wistar-Kyoto rats and SHRs and that they were functional. The results obtained in this study provide a tool to explore the mechanisms that regulate the expression of p22(phox) gene in rat VSMCs. Furthermore, our findings show that changes in the sequence of p22(phox) gene promoter and in the degree of activation of VSMCs are responsible for upregulated expression of p22(phox) in SHRs

    Loss of myocardial LIF receptor in experimental heart failure reduces cardiotrophin-1 cytoprotection. A role for neurohumoral agonists?

    Get PDF
    OBJECTIVES: Cardiomyocyte loss is involved in the transition from compensatory left ventricular hypertrophy (LVH) to heart failure (HF). Our aim was to investigate the status of the leukaemia inhibitory factor receptor (LIFR)/gp130 survival pathway and its cytoprotective activity in intact cardiac tissue and in cardiomyocytes obtained from adult spontaneously hypertensive rats (SHR) with LVH (non-failing SHR) and from aged SHR with overt HF (failing SHR). METHODS: Cardiac morphometry was assayed by planimetry in an image analysis system. mRNA and protein expression were quantified by real time RT-PCR and Western blotting. Receptors were localized by immunocytochemistry. Trypan blue staining, TUNEL, and MTT cell viability assays were employed to study the cytoprotective activity of cardiotrophin-1 (CT-1) in isolated caridomyocytes. RESULTS: Compared to non-failing SHR, failing SHR exhibited enhanced myocardial cell death (p<0.01) demonstrated by the increase in Bax/Bcl-2 ratio, caspase-3 activation and poly (ADP-ribose) polymerase (PARP) fragmentation. Failing SHR had a 7-fold diminished expression (p<0.01) of LIFR, no changes in gp130, and 1.6-fold increased myocardial expression (p<0.01) of CT-1. In cardiomyocytes isolated from non-failing SHR, recombinant CT-1 inhibited apoptotic and non-apoptotic cell death induced by angiotensin II or hydrogen peroxide. LIFR protein was entirely absent in cardiomyocytes isolated from failing SHR, which were resistant to the cytoprotective effects of CT-1. Finally, stimulation of non-failing SHR cardiomyocytes with angiotensin II, aldosterone, norepinephrine or endothelin-1 significantly decreased (p<0.01) LIFR expression. CONCLUSIONS: These data suggest that loss of CT-1-dependent survival mechanisms may contribute to the increase of cell death associated with HF in SHR. Neurohumoral activation may contribute to this alteration via suppression of LIFR

    Oxidative Stress in Arterial Hypertension: Role of NAD(P)H Oxidase

    Get PDF
    Increased vascular reactive oxygen species production, especially superoxide anion, contributes significantly in the functional and structural alterations present in hypertension. An enhanced superoxide production causes a diminished NO bioavailability by an oxidative reaction that inactivates NO. Exaggerated superoxide levels and a low NO bioavailability lead to endothelial dysfunction and hypertrophy of vascular cells. It has been shown that the enzyme NAD(P)H oxidase plays a major role as the most important source of superoxide anion in vascular cells. Several experimental observations have shown an enhanced superoxide generation as a result of the activation of vascular NAD(P)H oxidase in hypertension. Although this enzyme responds to stimuli such as vasoactive factors, growth factors, and cytokines, some recent data suggest the existence of a genetic background modulating the expression of its different components. New polymorphisms have been identified in the promoter of the p22(phox) gene, an essential subunit of NAD(P)H oxidase, influencing the activity of this enzyme. Genetic investigations of these polymorphisms will provide novel markers for determination of genetic susceptibility to oxidative stress in hypertension

    Respuestas del miocardio al estrés biomecánico

    Get PDF
    El estrés biomecánico del miocardio hace referencia a la situación que se genera cuando, debido a la hipertensión, la hipoxia u otras formas de daño miocárdico, están aumentadas las demandas de trabajo cardíaco y/o se ha perdido miocardio funcionante. Como consecuencia del estrés biomecánico se producen diversas respuestas que afectan a todas las células miocárdicas, en particular a los cardiomiocitos. El resultado final de las mismas son distintas modificaciones fenotípicas que inicialmente son compensadoras (p. ej., hipertrofia), pero que si persiste el estrés pueden mediar la transición de la hipertrofia a la insuficiencia cardíaca (p. ej., apoptosis y fibrosis). Esta revisión se centra en la descripción de las distintas fases de las respuestas miocárdicas al estrés, así como en la consideración de los hallazgos más recientes sobre los mecanismos moleculares implicados en el desarrollo de insuficiencia cardíaca

    Torasemide inhibits angiotensin II-induced vasoconstriction and intracellular calcium increase in the aorta of spontaneously hypertensive rats

    Get PDF
    Torasemide is a loop diuretic that is effective at low once-daily doses in the treatment of arterial hypertension. Because its antihypertensive mechanism of action may not be based entirely on the elimination of salt and water from the body, a vasodilator effect of this drug can be considered. In the present study, the ability of different concentrations of torasemide to modify angiotensin II (Ang II)-induced vascular responses was examined, with the use of an organ bath system, in endothelium-denuded aortic rings from spontaneously hypertensive rats. Ang II-induced increases of intracellular free calcium concentration ([Ca(2+)](i)) were also examined by image analysis in cultured vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats. A dose-response curve to Ang II was plotted for cumulative concentrations (from 10(-9) to 10(-6) mol/L) in endothelium-denuded aortic rings (pD(2)=7.5+/-0.3). Isometric contraction induced by a submaximal concentration of Ang II (10(-7) mol/L) was reduced in a dose-dependent way by torasemide (IC(50)=0.5+/-0.04 micromol/L). Incubation of VSMCs with different concentrations of Ang II (from 10(-10) to 10(-6) mol/L) resulted in a dose-dependent rise of [Ca(2+)](i) (pD(2)=7.5+/-0.3). The stimulatory effect of [Ca(2+)](i) induced by a submaximal concentration of Ang II (10(-7) mol/L) was blocked by torasemide (IC(50)=0.5+/-0.3 nmol/L). Our findings suggest that torasemide blocks the vasoconstrictor action of Ang II in vitro. This action can be related to the ability of torasemide to block the increase of [Ca(2+)](i) induced by Ang II in VSMCs. It is proposed that these actions might be involved in the antihypertensive effect of torasemide observed in vivo

    Aldosterone induces cardiotrophin-1 expression in HL-1 adult cardiomyocytes

    Get PDF
    Aldosterone (ALDO) may induce cardiac hypertrophy by nonhemodynamic mechanisms that are not completely defined. Cardiotrophin-1 (CT-1) is a cytokine that exerts hypertrophic actions on isolated cardiomyocytes and promotes cardiac hypertrophy in vivo. We investigated whether ALDO induces CT-1 expression in HL-1 cardiomyocytes aiming at the possibility that the cytokine is involved in ALDO-induced cardiomyocyte hypertrophy. mRNA and protein expression were quantified by RT-PCR and Western blot. Cardiomyocyte area, as an index of hypertrophy, was assayed by image analysis in phalloidin-stained HL-1 cells. ALDO addition to adult HL-1 cardiomyocytes increased (P<0.01) CT-1 mRNA and protein expression in a concentration-dependent manner. This effect was abrogated by actinomycin D, the mineralocorticoid and glucocorticoid receptor antagonists spironolactone and RU486, respectively, and the p38 MAPK blocker SB203580. CT-1 signaling pathway blockade with specific antibodies against the cytokine and its two receptor subunits avoided (P<0.01) alpha-sarcomeric actin and c-fos protein overexpression as well as cell size increase induced by ALDO in HL-1 cells. In vivo, a single ALDO injection acutely increased (P<0.01) the myocardial expression of CT-1 in C57BJ6 wild-type mice but not CT-1-null mice. The bolus of the mineralocorticoid increased (P<0.01) ANP and c-fos mRNA expression in the myocardium of wild-type mice, whereas no changes were observed in CT-1-null mice. In summary, ALDO induces CT-1 expression in adult HL-1 cardiomyocytes via genomic and nongenomic mechanisms. CT-1 up-regulation could have relevance in the direct hypertrophic effects of ALDO in cardiomyocytes

    Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats

    Get PDF
    This study was designed to test the hypothesis that stimulation of nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase is involved in increased vascular superoxide anion (*O(2)(-)) production in spontaneously hypertensive rats (SHR). The study was performed in 16-week-old and 30-week-old normotensive Wistar-Kyoto rats (WKY(16) and WKY(30), respectively) and in 16-week-old and 30-week-old SHR (SHR(16) and SHR(30), respectively). In addition, 16-week-old SHR were treated with oral irbesartan (average dose 20 mg/kg per day) for 14 weeks (SHR(30)-I). Aortic NADH/NADPH oxidase activity was determined by use of chemiluminescence with lucigenin. The expression of p22phox messenger RNA was assessed by competitive reverse transcription-polymerase chain reaction. Vascular responses to acetylcholine were determined by isometric tension studies. Aortic wall structure was studied, determining the media thickness and the cross-sectional area by morphometric analysis. Whereas systolic blood pressure was significantly increased in the 2 groups of hypertensive animals compared with their normotensive controls, no differences were observed in systolic blood pressure between SHR(30) and SHR(16). No other differences in the parameters measured were found between WKY(16) and SHR(16). In SHR(30) compared with WKY(30), we found significantly greater p22phox mRNA level, NADH/NADPH-driven *O(2)(-) production, media thickness, and cross-sectional area and an impaired vasodilation in response to acetylcholine. Treated SHR had similar NADH/NADPH oxidase activity and p22phox expression as the WKY(30) group. The vascular functional and morphological parameters were improved in SHR(30)-I. These findings suggest that an association exists between p22phox gene overexpression and NADH/NADPH overactivity in the aortas of adult SHR. Enhanced NADH/NADPH oxidase-dependent *O(2)(-) production may contribute to endothelial dysfunction and vascular hypertrophy in this genetic model of hypertension

    Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3

    Get PDF
    Intracellular signaling pathways that are involved in protection of vascular smooth muscle cells (VSMC) from apoptosis remain poorly understood. This study examines the effect of activators of cAMP/cGMP signaling on apoptosis in non-transfected VSMC and in VSMC transfected with c-myc (VSMC-MYC) or with its functional analogue, E1A-adenoviral protein (VSMC-E1A). Serum-deprived VSMC-E1A exhibited the highest apoptosis measured as the content of chromatin and low molecular weight DNA fragments, phosphatidylserine content in the outer surface of plasma membrane and caspase-3 activity (ten-, five-, four- and tenfold increase after 6 h of serum withdrawal, respectively). In VSMC-E1A, the addition of an activator of adenylate cyclase, forskolin, abolished chromatin cleavage, DNA laddering, caspase-3 activation and the appearance of morphologically-defined apoptotic cells triggered by 6 h of serum deprivation. In non-transfected VSMC and in VSMC-MYC, 6 h serum deprivation led to approximately six- and threefold activation of chromatin cleavage, respectively, that was also blocked by forskolin. In VSMC-E1A, inhibition of apoptosis was observed with other activators of cAMP signaling (cholera toxin, isoproterenol, adenosine, 8-Br-cAMP), whereas 6 h incubation with modulators of cGMP signaling (8-Br-cGMP, nitroprusside, atrial natriuretic peptide, L-NAME) did not affect the development of apoptotic machinery. The antiapoptotic effect of forskolin was abolished in 24 h of serum deprivation that was accompanied by normalization of intracellular cAMP content and protein kinase A (PKA) activity. Protection of VSMC-E1A from apoptosis by forskolin was blunted by PKA inhibitors (H-89 and KT5720), whereas transfection of cells with PKA catalytic subunit attenuated apoptosis triggered by serum withdrawal. The protection of VSMC-E1A by forskolin from apoptosis was insensitive to modulators of cytoskeleton assembly (cytochalasin B, colchicine). Neither acute (30 min) nor chronic (24 h) exposure of VSMC to forskolin modified basal and serum-induced phosphorylation of the MAP kinase ERK1/2. Thus, our results show that activation of cAMP signaling delays the development of apoptosis in serum-deprived VSMC at a site upstream of caspase-3 via activation of PKA and independently of cAMP-induced reorganization of the cytoskeleton network and the ERK1/2-terminated MAPK signaling cascade

    Characterization of the protective effects of cardiotrophin-1 against non-ischemic death stimuli in adult cardiomyocytes

    No full text
    The aim of this study was to investigate the cytoprotective effects of CT-1 against non-ischemic death stimuli in adult cardiomyocytes. Primary cultures of cardiomyocytes isolated from adult rats were stimulated with either angiotensin II (Ang II) or H(2)O(2) in the presence or absence of CT-1. Cell death was determined by trypan blue exclusion, cell viability by MTT assay and apoptosis by TUNEL-Annexin-V staining. Intracellular pathways were analyzed by the employment of chemical inhibitors and by the assessment of signalling intermediates phosphorylation by Western blot analysis. CT-1 reduced (p<0.01) total cell death and apoptosis induced by either Ang II or H(2)O(2), and increased (p<0.01) cell viability in cardiomyocytes exposed to these stimuli. These effects of CT-1 were abolished in the presence of antibodies specific for gp130 or LIFR and did not require RNA or protein synthesis. Both Wortmannin and PD98059 abolished protective effects of CT-1 against H(2)O(2), whereas only Wortmannin inhibited protection against Ang II. In both cases, Akt kinase activation and Bad phosphorylation were observed. These findings suggest that CT-1 protects adult cardiomyocytes against Ang II- and oxidative stress-induced cell death, via gp130/LIFR and by means of the PI3K/Akt and the p42/44 MAPK intracellular cascades
    corecore