
ISSN: 1524-4563 
Copyright © 2001 American Heart Association. All rights reserved. Print ISSN: 0194-911X. Online

72514
Hypertension is published by the American Heart Association. 7272 Greenville Avenue, Dallas, TX

DOI: 10.1161/hy1201.099611 
 2001;38;1395-1399 Hypertension

Francisco J. Beaumont and Javier Díez 
Guillermo Zalba, Gorka San José, María U. Moreno, María A. Fortuño, Ana Fortuño,

 Oxidative Stress in Arterial Hypertension: Role of NAD(P)H Oxidase

 http://hyper.ahajournals.org/cgi/content/full/38/6/1395
located on the World Wide Web at: 

The online version of this article, along with updated information and services, is

 http://www.lww.com/reprints
Reprints: Information about reprints can be found online at 
  

 journalpermissions@lww.com
410-528-8550. E-mail: 
Kluwer Health, 351 West Camden Street, Baltimore, MD 21202-2436. Phone: 410-528-4050. Fax: 
Permissions: Permissions & Rights Desk, Lippincott Williams & Wilkins, a division of Wolters
  

 http://hyper.ahajournals.org/subscriptions/
Subscriptions: Information about subscribing to Hypertension is online at 

 at UNIVERSIDAD DE NAVARRA on June 17, 2009 hyper.ahajournals.orgDownloaded from 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dadun, University of Navarra

https://core.ac.uk/display/83569411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hyper.ahajournals.org/cgi/content/full/38/6/1395
http://hyper.ahajournals.org/subscriptions/
mailto:journalpermissions@lww.com
http://www.lww.com/reprints
http://hyper.ahajournals.org


Oxidative Stress in Arterial Hypertension
Role of NAD(P)H Oxidase

Guillermo Zalba, Gorka San José, María U. Moreno, María A. Fortuño, Ana Fortuño,
Francisco J. Beaumont, Javier Díez

Abstract—Increased vascular reactive oxygen species production, especially superoxide anion, contributes significantly in
the functional and structural alterations present in hypertension. An enhanced superoxide production causes a
diminished NO bioavailability by an oxidative reaction that inactivates NO. Exaggerated superoxide levels and a low
NO bioavailability lead to endothelial dysfunction and hypertrophy of vascular cells. It has been shown that the enzyme
NAD(P)H oxidase plays a major role as the most important source of superoxide anion in vascular cells. Several
experimental observations have shown an enhanced superoxide generation as a result of the activation of vascular
NAD(P)H oxidase in hypertension. Although this enzyme responds to stimuli such as vasoactive factors, growth factors,
and cytokines, some recent data suggest the existence of a genetic background modulating the expression of its different
components. New polymorphisms have been identified in the promoter of the p22phox gene, an essential subunit of
NAD(P)H oxidase, influencing the activity of this enzyme. Genetic investigations of these polymorphisms will provide
novel markers for determination of genetic susceptibility to oxidative stress in hypertension. (Hypertension. 2001;38:
1395-1399.)
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Large amounts of reactive oxygen species (ROS), result-
ing from oxygen, are produced in vascular cells, includ-

ing superoxide anion (·O2
�) and hydrogen peroxide (H2O2),

and act as important intracellular signals. Oxidative stress
describes the injury caused to cells by the oxidizing of
macromolecules resulting from increased formation of ROS
and/or decreased antioxidant reserve. Recent works have
reported that all types of vascular cells generate ROS. A
growing number of reports have provided a critical role for
oxidative stress in the pathogenesis of cardiovascular dis-
eases, including hypertension.1

An enhanced production of ROS contributes to the dys-
regulation of physiological processes, which leads to struc-
tural and functional alterations in hypertension.2 Two char-
acteristic alterations of the vascular wall in hypertension are
endothelial dysfunction and vascular smooth muscle cell
(VSMC) hypertrophy. An enhanced production of ROS
causes a loss of NO bioavailability, which impairs endothelial
function, causing (among others) a decreased endothelium-
dependent vasodilation.3 Among these ROS, ·O2

� is critically
involved in the breakdown of NO.4 Thus, a diminished
availability of NO can be the result of a decreased activity
from the NO-production pathway or the result of an increase
in the oxidative inactivation of NO by ·O2

�. Recently, we
have shown that endothelial dysfunction is associated with an

excess of ·O2
� generation rather than a diminished NO

production in the aorta of adult spontaneously hypertensive
rats (SHR).5 The presence of unpaired electrons causes ·O2

�

to be chemically unstable and highly reactive. The reaction of
·O2

� with NO leads to the production of peroxynitrite,6 a
potent oxidant believed to be responsible for tissue injury.
Peroxynitrite induces the oxidation of proteins, DNA, and
lipids in vascular cells.7 On the other hand, recent findings
suggest that increased ROS may stimulate VSMC hypertro-
phy and hyperplasia.8 Li et al9 has shown that ·O2

� induces
the proliferation of VSMCs, and Zafari et al10 has proposed a
role for ·O2

� and H2O2 in angiotensin II–induced VSMC
hypertrophy. ROS are also involved in several signal path-
ways and in the activation of redox-sensitive transcriptional
factors, such as nuclear factor (NF)-kB.11 It has been shown
recently that angiotensin II activates NF-�B in VSMCs.12

Furthermore, NF-�B has been implicated in the transcription
of a number of vascular genes.13 Finally, NF-�B seems to
play a pivotal role in angiotensin II–stimulated ROS genera-
tion and inflammatory mechanisms (see review14).

Vascular NAD(P)H Oxidase
Enzymatic sources of ROS in the vascular wall playing a
functional role in hypertension are NAD(P)H oxidase, NO
synthase, xanthine oxidase, and cyclooxygenase. Vascular
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NAD(P)H oxidase, which is to some extent similar to the
previously reported neutrophil NADPH oxidase, is the most
important source of ·O2

� in vascular cells.15–18 The structure
and function of this vascular oxidase has been recently
reviewed.8 At present, response to extracellular NAD(P)H is
one of the major unanswered questions concerning membrane
orientation and function of this oxidase.19 Vascular NAD(P)H
oxidase consists of a cytochrome b558, composed of p22phox

and gp91phox subunits and 3 cytosolic components, p47phox,
p67phox, and rac. The Table summarizes the expression of
these components in vascular cells. Transfection of antisense
p22phox demonstrated this subunit of the cytochrome to be
essential for functionality of NAD(P)H oxidase.20 Disruption
of gp91phox and p47phox subunits lowers vascular ·O2

� produc-
tion, without significant alterations in basal blood pres-
sure.21,22 Thus, the existence of compensatory mechanisms
regulating blood pressure in this knockout mouse cannot be
discarded. Although the gp91phox subunit is absent in VSMCs,
the presence of functional isoforms, Nox1 and Nox4, has been
reported.23,24 Recently, it has been shown that Nox1 mediates
angiotensin II–induced ·O2

� formation and redox-sensitive
signaling pathways in VSMCs.24 Vascular NAD(P)H oxidase
is a constitutive enzyme, but it can be also regulated by
humoral factors, such as angiotensin II, platelet-derived
growth factor, thrombin, tumor growth factor-�, and glu-
cocorticoids,18,25–28 and hemodynamic forces, including lam-
inar and oscillatory shear stress.29

NAD(P)H Oxidase in Experimental
Hypertension

Angiotensin II–Induced Hypertension
Rajagopalan et al30 demonstrated that chronic infusion of
angiotensin II in rats resulted in hypertension in correlation
with an increased NAD(P)H oxidase-derived ·O2

� generation.
In the same study, these alterations were corrected by
pretreatment of the rats with losartan. Fukui et al31 reported
that increased activity of NAD(P)H oxidase in angiotensin
II–induced hypertension activated NAD(P)H oxidase by up-
regulating the p22phox mRNA levels, a critical component of
this oxidase.20 Infusion of recombinant heparin-binding su-
peroxide dismutase (SOD) decreased both blood pressure and
p22phox mRNA expression.31

Recent evidence also suggests the involvement of other
subunits in angiotensin II–induced hypertension. Thus, in
aortas from angiotensin II–infused mice, there is an increased
NAD(P)H-driven ·O2

� production concomitant with in-
creased protein levels of p67phox and gp91phox subunits that is
associated with the elevation of blood pressure.32 Further-

more, these angiotensin II–induced increases were normal-
ized by simultaneous treatment with losartan.

DOCA-Salt and Renovascular Hypertension
Somers et al33 showed an enhanced vascular ·O2

� production
associated with impaired endothelium-dependent relaxation
in deoxycorticosterone acetate (DOCA)-salt rats, a hyperten-
sion model characterized by a low plasma renin activity.
Recently, Wu et al34 have reported that the enhanced ·O2

�

production present in the aorta of DOCA-salt hypertensive
rats is associated with an increased NADH oxidase activity. It
seems that this increased oxidase activity is independent of
the rise in blood pressure. It has been suggested that an
increased vascular angiotensin II release as a consequence of
nephrectomy is the origin of the increased NADH oxidase
activity in these rats.

Renovascular hypertension in the 2-kidney, 1-clip rat
model depends on an increase in circulating angiotensin II
levels.35 In this model, NO production is increased,36 and a
potential role for ·O2

� in enhanced NO breakdown has been
suggested. Heitzer et al37 showed an increased aortic ·O2

�

generation in this hypertension model associated with an
overactivity of NAD(P)H oxidase. Although the mechanism
whereby angiotensin II activates NAD(P)H oxidase is still
unclear, it might involve a protein kinase C–dependent
process.

Genetic Hypertension
Several works have recently provided evidence confirming
the pathophysiological function of ROS in the SHR. Suzuki et
al38 showed an increased ·O2

� generation in venules and
arterioles in these hypertensive rats. Furthermore, Nakazono
et al39 demonstrated that administration within the vessel wall
of heparin-binding SOD normalized the blood pressure of
SHR. Recently, we reported an enhanced NAD(P)H oxidase–
driven ·O2

� production associated with an upregulated p22phox

mRNA expression in the aorta of adult SHR with endothelial
dysfunction and vascular wall hypertrophy.40

In the same work, NAD(P)H oxidase–driven ·O2
� produc-

tion was not increased in young SHR, which discards a
critical role of hypertension in the regulation of oxidase. In
this regard, it has been reported that in norepinephrine-
induced hypertension, neither ·O2

� production nor NAD(P)H
oxidase is increased.30 Interestingly, we found that both
p22phox mRNA expression and NAD(P)H oxidase activity
were normalized in adult SHR treated with the angiotensin II
type 1 (AT1) receptor antagonist irbesartan.40 This suggests a
critical role of angiotensin II in the upregulation of this
oxidase in the adult SHR. This possibility is further supported
by the fact that enhanced expression of both AT1 receptor and
ACE have been reported in vessels of adult SHR.41 As a
consequence of an overactivity of the renin-angiotensin
system, changes in the degree of activation of vascular cells
can regulate p22phox expression. In this regard, we observed
that differences in the VSMC phenotype were correlated with
changes in the p22phox gene promoter activity.42 Thus, p22phox

gene promoter activity was increased in VSMCs isolated
from adult SHR compared with those obtained from normo-
tensive Wistar-Kyoto rats (WKY).

Expression of NAD(P)H Oxidase Components in Vascular Cells

Endothelial Cells Fibroblasts VSMCs

p22phox � � �

gp91phox � � �

p67phox � � �

p47phox � � �

rac � � �
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On the other hand, upregulation of the oxidase p22phox

subunit in the SHR may be consequence of alterations in the
sequence of the p22phox gene. In this way we identified 5
polymorphisms in the promoter region of the SHR p22phox

gene (Figure 1). Interestingly, the polymorphic SHR pro-
moter possessed functional significance, suggesting that these
polymorphisms might be involved in overexpression of the
p22phox gene in the vascular wall of the SHR.42 Taken
together, these findings suggest that besides changes in
degree of activation of VSMCs associated with the develop-
ment of hypertension in SHR, the presence of several poly-
morphisms in the promoter region of the p22phox gene might
contribute to the upregulation of p22phox in the vessel wall of
SHR. Increased p22phox expression is attenuated by SOD in
hypertensive animals, suggesting a role for ·O2

� itself in the
regulation of p22phox expression.31 Interestingly, we have
described 2 putative consensus binding sites for NF-�B in the
strong positive regulatory region of the rat p22phox promoter.42

In another model of genetic hypertension, Kerr et al43

showed a diminished NO bioavailability as a consequence of
an enhanced vascular ·O2

� production in 12- to 16-week-old
stroke-prone SHR (SHR-SP) and suggested a critical role of
the endothelium and endothelial NO synthase as sources of
the ·O2

� generation. Hamilton et al44 have recently described
similar results in old (9- to 12-month) SHR-SP. Interestingly,
in this last report, they showed that apocynin, a specific
inhibitor of NAD(P)H oxidase subunit assembly, decreased

the enhanced ·O2
� production present in the aortic wall of

both 3- to 4-month-old and 9- to 12-month-old SHR-SP.
From these results, a contributing role of NAD(P)H oxidase
in vascular ·O2

� generation in this model of hypertension
could be hypothesized.

NAD(P)H Oxidase in Human
Essential Hypertension
Clinical studies have shown the occurrence of increased ROS
production in humans with essential hypertension.45,46 In
physiological conditions, ·O2

� levels are modulated by en-
dogenous scavenging systems, such as SOD. It seems that in
essential hypertension, it should be an unbalance between an
enhanced ·O2

� generation and a decreased antioxidant activ-
ity. In fact, the levels of ROS scavengers, such as vitamin E,
glutathione, and SOD, have been reported to be depressed in
hypertensive patients.47 Furthermore, vitamin C recovers
endothelial function by restoring the NO-mediated vasodila-
tion of the endothelium in hypertensive patients.48

Berry et al49 have demonstrated that NAD(P)H oxidase is
a source of basal ·O2

� production in human internal mammary
arteries and saphenous veins. The same authors have reported
that angiotensin II increases ·O2

� in human arteries. This
effect is mediated by NAD(P)H oxidase and is completely
inhibited by the AT1 receptor antagonist losartan. Higher
basal ·O2

� concentration in arteries, compared with that in
veins, was maintained after endothelial denudation by rub-
bing, suggesting that VSMCs might be an important source of
·O2

� generation in the human arterial wall. Up to now, no
studies have been published dealing with vascular NAD(P)H
oxidase activity in human hypertension.

Although the relationship between AT1 receptor and
NAD(P)H oxidase activity is fascinating, several studies do
not show a beneficial effect of ACE inhibitors and AT1

antagonists on endothelial function in patients with essential
hypertension.50,51 On the other hand, results with these drugs
are more convincing in patients with coronary artery dis-
ease.52 Thus, the possibility exists that NAD(P)H oxidase
could play a role in patients with a greater cardiovascular risk.

Guzik et al53 have reported a functional effect of the C242T
p22phox polymorphism in the p22phox gene on NAD(P)H
oxidase–driven ·O2

� production in the vascular wall of
patients with atherosclerosis. Recently, Schachinger et al54

described an association of the C242T p22phox polymorphism
with coronary endothelial vasodilator function. Gardemann et
al55 showed that the association of the A640G polymorphism
in the p22phox gene with the presence and extent of coronary
artery disease was stronger in hypertensive than in normo-
tensive subjects. Thus, the role of p22phox polymorphisms via
NAD(P)H oxidase–mediated ·O2

� production in the develop-
ment of atherosclerosis in essential hypertension can be
hypothesized.

Conclusion and Perspectives
Arterial hypertension is associated with an enhanced vascular
production of ROS, namely, ·O2

�. Overactivity of NAD(P)H
oxidase may be critically involved in such an alteration
(Figure 2). Thus, this enzyme may play a role in endothelial
dysfunction and vascular hypertrophy present in hypertension

Figure 1. Influence of cellular phenotype and gene polymor-
phisms on p22phox subunit expression. A, Existence of polymor-
phisms between normotensive WKY and SHR p22phox promoter.
ATG represents the translation initiation codon. B, Transfection
experiments with the SHR polymorphic promoter (P) and the
WKY control promoter (C) into VSMCs from WKY and SHR. His-
tograms express relative luciferase activity of the p22phox pro-
moter. *P�0.05 vs WKY control promoter, by Student’s t test.
(This figure is an adaptation.42)
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(Figure 2). Besides hemodynamic factors, humoral factors
such as angiotensin II may be responsible for altered
NAD(P)H oxidase in hypertension (Figure 2), thus allowing
for specific pharmacological interventions aimed to reduce
oxidative stress in hypertension. The possibility also exists
that p22phox gene promoter polymorphisms might regulate
NAD(P)H oxidase–driven ·O2

� production in hypertensive
patients. Nevertheless, to confirm that these polymorphisms
of the p22phox gene are novel markers for hypertensive
oxidative stress, investigations in large populations are
necessary.
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