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Aldosterone (ALDO) may induce cardiac hypertrophy by non-
hemodynamic mechanisms that are not completely defined.
Cardiotrophin-1 (CT-1) is a cytokine that exerts hypertrophic
actions on isolated cardiomyocytes and promotes cardiac hy-
pertrophy in vivo. We investigated whether ALDO induces
CT-1 expression in HL-1 cardiomyocytes aiming at the possi-
bility that the cytokine is involved in ALDO-induced cardio-
myocyte hypertrophy. mRNA and protein expression were
quantified by RT-PCR and Western blot. Cardiomyocyte area,
as an index of hypertrophy, was assayed by image analysis in
phalloidin-stained HL-1 cells. ALDO addition to adult HL-1
cardiomyocytes increased (P < 0.01) CT-1 mRNA and protein
expression in a concentration-dependent manner. This effect
was abrogated by actinomycin D, the mineralocorticoid
and glucocorticoid receptor antagonists spironolactone and

RU486, respectively, and the p38 MAPK blocker SB203580.
CT-1 signaling pathway blockade with specific antibodies
against the cytokine and its two receptor subunits avoided
(P < 0.01) �-sarcomeric actin and c-fos protein overexpression
as well as cell size increase induced by ALDO in HL-1 cells. In
vivo, a single ALDO injection acutely increased (P < 0.01) the
myocardial expression of CT-1 in C57BJ6 wild-type mice but
not CT-1-null mice. The bolus of the mineralocorticoid in-
creased (P < 0.01) ANP and c-fos mRNA expression in the
myocardium of wild-type mice, whereas no changes were ob-
served in CT-1-null mice. In summary, ALDO induces CT-1
expression in adult HL-1 cardiomyocytes via genomic and
nongenomic mechanisms. CT-1 up-regulation could have rel-
evance in the direct hypertrophic effects of ALDO in
cardiomyocytes. (Endocrinology 149: 4970–4978, 2008)

ACCUMULATING CLINICAL and experimental evi-
dences suggest that aldosterone (ALDO), indepen-

dently from its hemodynamic effects, participates in the de-
velopment of left ventricular hypertrophy (LVH) and
myocardial remodeling present in cardiac diseases (1). In
particular, LVH is specially overstated in subjects with pri-
mary hyperaldosteronism, compared with essential or reno-
vascular hypertensive patients, and the presence of LVH is
higher in patients with hyperaldosteronism than in essential
or renovascular hypertensives, despite similar blood pres-
sure values (2, 3). Plasma ALDO associates with LVH in
patients with primary hyperaldosteronism (4, 5) and corre-
lates with both left ventricular mass index and relative wall
thickness in untreated essential hypertensives (6). In addi-
tion, an excess of plasma ALDO is associated with increased
left ventricular wall thickness in normotensive subjects with
familial hyperaldosteronism (7).

Studies in experimental models indicate that ALDO is
locally implicated in the development of LVH and myocar-
dial remodeling (8, 9). Transgenic mice overexpressing 11�-
hydroxysteroid dehydrogenase type 2 in cardiomyocytes,
which facilitates ALDO occupancy of mineralocorticoid re-
ceptor (MR), exhibit normal blood pressure values but spon-
taneously develop severe cardiac hypertrophy (10). Subcu-

taneous infusion of nonhypertensive doses of ALDO to
normotensive rats leads to cardiac hypertrophy indepen-
dently from blood pressure (11). Also, in normotensive rats,
a high sodium intake for 8 wk produces LVH associated with
increased cardiac ALDO production and ALDO synthase
overactivity in the absence of blood pressure elevation (12).
However, the molecular and cellular mechanisms underly-
ing the direct hypertrophic effect of ALDO on the heart
remain to be established.

Cardiotrophin-1 (CT-1), a cytokine belonging to the IL-6
family, is a 21.5-kDa protein capable of inducing hypertro-
phy in neonatal and adult cardiomyocytes via its membrane
receptor, the heterodimer constituted by the leukemia in-
hibitory factor receptor (LIFR) and the glycoprotein 130
(gp130) (13–15). Intraperitoneal administration of recombi-
nant CT-1 to normotensive mice increases left ventricular
weight in a dose-dependent manner (16). Cardiac CT-1 ex-
pression is increased in several experimental models of hy-
pertensive LVH (15, 17, 18). Furthermore, plasma levels of
CT-1 are increased in hypertensive patients with LVH and
decrease after antihypertensive therapy only in patients ex-
hibiting LVH regression (19, 20). Of interest, it has been
reported that some humoral factors classically involved in
LVH development stimulate CT-1 expression (21–23).

We hypothesized that a mechanism for ALDO to induce
cardiomyocyte hypertrophy may be the induction of CT-1
expression in these cells. To test this possibility, we first
investigated whether ALDO was able to induce CT-1 ex-
pression and the intracellular pathways involved in this ef-
fect in HL-1 adult cardiomyocytes. Second, we analyzed the
hypertrophic effects of ALDO in conditions of CT-1-pathway
blockade in the same cell line. Finally, we approached the in
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vivo relevance of these data assaying the induction of cardiac
CT-1 mRNA and hypertrophic genes in response to an acute
ALDO overloading in C57BJ6 wild-type and CT-1-null mice.

Materials and Methods
Cell culture

HL-1, a cell line derived from adult mouse heart (24), were a gift from
Dr. W. C. Claycomb (Louisiana State University, New Orleans, LA).
Cardiomyocytes plated in flasks coated with fibronectin (Life Technol-
ogies, Inc., Gaithersburg, MD)-gelatin (Sigma, St. Louis, MO) were main-
tained in Complete Claycomb Medium (JRH Biosciences, Lenexa, KS)
supplemented with 100 �mol/liter norepinephrine stock [consisting of
10 mmol/liter norepinephrine (Sigma) dissolved in 30 mmol/liter l-
ascorbic acid (Sigma), 2 mmol/liter l-glutamine (Invitrogen, Paisley,
UK) and 10% fetal bovine serum (JRH Biosciences)]. During culture,
the medium was changed routinely every 48 h. For experiments, cells
were serum starved 24 h before stimulation with ALDO (Fluka,
Sigma) at 10�9 to 10�6 mol/liter for 3 and 24 h for mRNA and protein
determination, respectively, except for time-response experiments.
To investigate the intracellular pathways, the following inhibitors
were added 30 min before ALDO addition: MR antagonist spirono-
lactone (10�6 mol/liter; Sigma), glucocorticoid receptor (GR) antag-
onist RU486 (10�6 mol/liter; Sigma), RNA synthesis inhibitor acti-
nomycin D (10�6 mol/liter; Calbiochem, EMD-Merck, Madison, WI),
protein synthesis inhibitor cycloheximide (10�6 mol/liter; Calbio-
chem), p38 MAPK inhibitor SB203580 (10�5 mol/liter; Calbiochem),
p42/44 MAPK inhibitor PD98059 (10�6 mol/liter; Calbiochem), cal-
cium antagonist lercanidipine (10�6 mol/liter; a gift from Recordatti,
Milan, Italy), and antibodies against LIFR and gp130 (1 �g/ml; Santa
Cruz Biotechnology, Santa Cruz, CA).

Measurement of cell size

HL-1 cardiomyocytes grown on glass coverslips were fixed in 4%
formaldehyde, and stained with Alexa Fluor 488-conjugated phalloidin
(Molecular Probes, Invitrogen) (1:50 dilution) for 30 min at 37 C to
visualize F-actin. Cell surface area from at least 50 cardiomyocytes per
condition was measured in three independent experiments using the
automated image analysis system (Soft Imaging Analysis, Münster,
Germany).

Animals

The investigation was performed in accordance with the Guide for
Care and Use of Laboratory Animals published by the U.S. National
Institutes of Health (publication no. 82-23, revised in 1996). CT-1-null
mice were a gift from Dr. M. Selzner (Zurich University Hospital, Zurich,
Switzerland). Although cardiac characterization of this strain has not
been reported, in our experience, at the age of 5 months, these mice do
not spontaneously develop cardiac hypertrophy because they exhibit
similar left ventricular morphometry (i.e. wall thickness and chamber
diameter), similar cardiomyocyte diameter, and similar expression of
ANP and c-fos genes than their wild-type background (our unpublished
data). Male C57BJ6 wild-type mice (5 months old) and age-matched
CT-1-null mice received one ip injection of ALDO 1 mg/kg or vehicle
(150 mmol/liter NaCl, 5% ethanol) (n � 8, each group). Two hours after
the injection, blood samples were obtained from the half of the animals
(n � 4 each group) to measure plasma ALDO concentration by RIA
(Diasorin, Saluggia, Vercelli, Italy). To avoid hemodynamic effects of the
mineralocorticoid, animals were killed 6 h after the injection by cervical
dislocation under 3% isoflorane anesthesia. Hearts were removed,
weighed, and immediately frozen in liquid nitrogen for molecular
studies.

Western blotting

Aliquots of 20 �g of proteins were size fractionated on 15% (for CT-1)
or 10% (for c-fos and �-sarcomeric actin) polyacrylamide gels by elec-
trophoresis and transferred to polyvinyl difluoride membranes. The
following specific antibodies were used diluted at 1:500: CT-1 (Santa
Cruz Biotechnology), p38, p38-P (Thr180/Tyr182; Cell Signaling Tech-

nology, Danvers, MA), MR, and GR (Abcam, Cambridge, MA). Western
blots were also stained for �-actin (Sigma) diluted at 1:1000 to correct for
protein loading. In all cases, bound antibody was detected by peroxi-
dase-conjugated secondary antibodies (Amersham Biosciences, Piscat-
away, NJ) and visualized using the ECL-Plus chemiluminescence de-
tection system (Amersham Biosciences). After densitometry, OD values
were expressed as arbitrary units. All Western blots were performed at
least in triplicate for each animal or in vitro experimental condition.

Reverse transcription and real-time PCR

Total RNA was extracted from cells and hearts using Trizol (Invitro-
gen) and subsequently purified using RNeasy total RNA isolation kit
(QIAGEN, Milden, Germany). Reverse transcription was performed
with 500 ng of total RNA. Real-time PCR was performed with an ABI
Prism 7000 sequence detection system (Applied Biosystems Inc., Foster
City, CA) by using specific TaqMan MGB fluorescent probes (Applied
Biosystems) for mice CT-1, ANP, and c-fos. All samples were assayed in
triplicate and normalized on the basis of their constitutive 18S ribosomal
RNA. To detect the expression of GR and MR in the HL-1 cell line,
mRNA was retrotranscripted, and the following specific primers re-
cently reported by Sierra et al. (25) were used: 5�-TGC TAT GCT TTG
CTC CTG ATC TG-3� and 5�-TGT CAG TTG ATA AAA CCG CTG CC-3�
for GR and 5�-GTG GAC AGT CCT TTC ACT ACC G-3� and 5�-TGA
CAC CCA GAA GCC TCA TCT C-3� for MR.

Statistical analysis

Results are presented as mean � se and computed from the average
measurements obtained from each experimental condition or from each
group of animals. Normal distribution of data were checked by means
of the Shapiro Wilks test. A Levene statistic test was performed to check
the homogeneity of variances. The unpaired Student’s t test or the Mann
Whitney U tests were used to assess statistical differences between the
two experimental groups. Differences among more than two experi-
mental conditions were tested by the ANOVA one-way test followed by
the Scheffé test to analyze differences between groups. P � 0.05 was
considered significant.

Results
ALDO induces CT-1 up-regulation in HL-1 cardiomyocytes

Incubation of HL-1 with ALDO (10�9 to 10�6 mol/liter) for
3 or 24 h increased (P � 0.01) CT-1 mRNA and protein,
respectively, in a concentration-dependent manner (Fig. 1, A
and B). Time-course examination showed that early induc-
tion of CT-1 mRNA levels by ALDO peaked at 2.3-fold (P �
0.01) after 3 h. For longer periods, the increase in CT-1 mRNA
was stable at around an 80%. The increase in CT-1 protein
expression accounted progressively and later than mRNA
increase (Fig. 1C). To evaluate whether CT-1 increase was a
direct effect of ALDO or whether it involved the synthesis of
intermediary proteins, we analyzed the effects of transcrip-
tion and transduction inhibitors on ALDO-induced CT-1 up-
regulation. The transcription inhibitor actinomycin D com-
pletely inhibited (P � 0.01) the increase of CT-1 mRNA and
protein induced by ALDO, whereas the protein synthesis
inhibitor cycloheximide did not affect CT-1 mRNA and com-
pletely blunted (P � 0.01) the protein induction (Fig. 2, A and
B). Before investigating the involvement of MR and GR in
this effect, we performed specific experiments to confirm that
this cell type expressed the two steroid receptors. As shown
in Fig. 2C, conventional PCR allowed the detection of MR
and GR mRNA in HL-1 cardiomyocytes. Because ALDO
binds MR and GR with different affinity, low hormone con-
centrations will bind MR and high concentrations will also
bind GR. Moreover, receptor antagonists are usually used at
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10- to 100-fold excess to ensure an effective blockade. Thus,
to investigate the role of MR and GR, cells were preincubated
for 30 min with spironolactone and/or RU486 at 10�6 mol/
liter, and ALDO was added at 10�8 or 10�7 mol/liter. Prior
addition of the specific MR and/or the GR blocker to HL-1
culture abolished (P � 0.01) ALDO-induced CT-1 up-regu-
lation (Fig. 2, C and D), indicating that both receptors may
mediate CT-1 induction. In additional experiments, we con-
firmed that the GR agonist dexamethasone used at 10�6

mol/liter was able to induce 2-fold the synthesis of CT-1
protein (data not shown). None of the chemical inhibitors

tested in these experiments affected CT-1 expression when
incubated alone (data not shown).

Once established that CT-1 up-regulation was a genomic
effect of ALDO, we investigated the potential participation
of other intracellular cascades that ALDO activates in cardiac
cells, by the use of specific chemical inhibitors. As illustrated
in Fig. 3, the p38 MAPK inhibitor SB203580 completely abol-
ished (P � 0.01) the induction of CT-1 expression, whereas
the p42/44 MAPK inhibitor PD98059 and the calcium L-type
channel antagonist lercanidipine did not modify CT-1 ex-
pression induced by ALDO (Fig. 3, A and B). None of the
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FIG. 1. Aldosterone induces CT-1 expression in a concentration- and time-dependent manner. HL-1 cardiomyocytes were incubated for 3 or 24 h
with ALDO at the indicated concentrations to assay mRNA (A) or protein (B) expression, respectively. Western blot is representative of three
independent experiments. C, Time-response curve obtained incubating HL-1 cardiomyocytes with ALDO (10�6 M) for 15–180 min (upper left
graph), histogram bars showing CT-1 mRNA (left panel) and protein (right panel) expression at the indicated time points and a representative
Western blot of CT-1 protein expression at the same time points (upper-right panel). All histogram bars represent the mean � SE of the three
independent experiments. *, P � 0.01 vs. baseline; $, P � 0.05 vs. baseline.
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chemicals tested affected CT-1 expression when incubated
alone (data not shown). Because p38 MAPK is one of the
signaling pathways used by ALDO to exert rapid non-
genomic effects (26, 27), we next studied whether p38 MAPK
activation occurred independently or downstream from
ALDO-MR binding. A time-response analysis of ALDO-in-
duced p38 MAPK activation demonstrated a significant 2- to
3.5-fold activation (P � 0.01) from 30 min to 3 h of incubation.
Additionally, whereas p38 phosphorylation induced by
ALDO was not affected by spironolactone at the first 30 min,
the MR blocker inhibited this effect up to 3 h (Fig. 3C). These
findings indicate that ALDO-induced p38 MAPK activation
in HL-1 involves early MR-independent mechanisms fol-
lowed by MR-dependent pathways.

CT-1 is involved in HL-1 hypertrophy induced by ALDO

We next investigated the hypertrophic effect of ALDO
on HL-1 cardiomyocytes and the potential involvement of
CT-1 in this effect. As shown in Fig. 4, ALDO addition to
HL-1 induced a significant increase (P � 0.01) in �-sar-
comeric actin and c-fos protein expression in 24 h and
promoted a significant (P � 0.01) cell area enlargement in
48 h. Prior addition of specific antibodies against each of
the two CT-1 receptor subunits, gp130 and LIFR, or against
CT-1 to the culture medium abolished (P � 0.01) the in-

crease in cell area and the overexpression of hypertrophic
proteins induced by the mineralocorticoid. None of the
three antibodies exerted any effect when incubated alone
(data not shown).

ALDO acutely induces the expression of cardiac
hypertrophic genes in wild-type but not in CT-1-null mice

To investigate whether our observations in HL-1 cardio-
myocytes also accounted in vivo, we performed an experi-
ment of ALDO acute overloading in mice to analyze cardiac
mRNA expression of CT-1 and hypertrophic genes. In wild-
type mice C57BJ6, a single ip injection of ALDO (1 mg/kg)
resulted in a significant increase (P � 0.01) of myocardial
CT-1 mRNA expression, compared with mice injected with
vehicle. As expected, this response was not observed in CT-
1-null mice (Fig. 5A). Interestingly, the single bolus of the
mineralocorticoid resulted in a significant (P � 0.01) cardiac
overexpression of ANP and c-fos genes in wild-type mice,
compared with those that received vehicle, whereas no
changes in the expression of these genes were observed in the
myocardium of CT-1-null mice (Fig. 5, B and C). The degree
of elevation in serum ALDO concentration after the hormone
injection was similar in the two strains of mice (� 940 in
wild-type and � 1145 in CT-null mice).
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Discussion

The major findings presented in this study are: 1) ALDO
induces CT-1 expression in HL-1 adult cardiomyocytes via
MR and GR and through the activation of p38-MAPK sig-
naling pathway, 2) CT-1 pathway blockade with specific
antibodies avoids ALDO-induced hypertrophy in this cell
line, 3) exogenously administrated ALDO induces myocar-
dial CT-1 expression and a genetic pattern of hypertrophy in
C57BJ6 wild-type mice, and 4) this genetic pattern is absent
in CT-1-null mice subjected to the same maneuver.

Although a number of findings suggest a role for ALDO
in LVH, it is difficult to distinguish between the direct actions
of the hormone on the myocardium and those secondary to
blood pressure elevation induced by the mineralocorticoid.
Only two studies have reported direct hypertrophic effects of
ALDO on cardiomyocytes (28, 29). The two molecular mech-

anisms proposed to explain ALDO-induced cardiomyocyte
hypertrophy agree in the involvement of MR and differ in the
downstream intracellular intermediates that are involved.
Whereas Na�/H� exchanger type 1 activation seems to be
crucial to cell-size increase promoted by ALDO in neonatal
ventricular cardiomyocytes (29), activation of the intracellu-
lar intermediates protein kinase C-�, p42/44, and c-Jun N-
terminal kinase MAPKs precedes the increase of the sarco-
meric proteins �- and �-myosin in the same model (28).
Present data showing that ALDO induces CT-1 expression in
HL-1 cardiomyocytes, together with the observation that
CT-1 pathway blockade avoids both �-sarcomeric actin and
c-fos protein overexpression, and the cell area enlargement
induced by the hormone, suggest a new molecular mecha-
nism to explain ALDO-induced hypertrophy in adult cardi-
omyocytes. The in vivo relevance for this mechanism is sup-
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ported by the finding that CT-1-null mice are unable to
acutely increase ANP and c-fos myocardial expression in
response to acute ALDO overloading as observed in the
wild-type mice. Of importance, our observations in mice do
not allow to exclude the possibility that both myocardial cell
types, cardiomyocytes and cardiac fibroblasts, participate in
cardiac CT-1 up-regulation observed in vivo. In this regard,
preliminary data from our laboratory revealed that ALDO
induces mRNA and protein expression of CT-1 in adult car-
diomyocytes and fibroblasts freshly isolated from adult
Wistar rats (our unpublished data). Ongoing studies will
clarify the real role of this autocrine/paracrine mechanism in
ALDO-associated cardiac hypertrophy that accounts in
pathological conditions.

Classic genomic effects of ALDO are characterized by a
latency of onset and their sensitivity to mRNA and protein
synthesis inhibitors. Our results showing the time course of
CT-1 mRNA increase and the inhibition exerted by actino-
mycin D on mRNA and protein increase clearly demonstrate
that the induction of CT-1 expression is a new genomic effect

of the mineralocorticoid in cardiomyocytes. Moreover, the
observation that the transduction blocker cycloheximide
does not affect the CT-1 mRNA increase induced by ALDO
indicates that this is a direct primary effect that does not
require the synthesis of intermediate proteins.

Regarding the receptor involved in this effect, our results
indicate that both MR and GR are able to mediate the CT-1
up-regulation induced by ALDO. Previous in vitro studies
have reported ALDO primary genomic effects partially or
completely mediated by GR in epithelial (30) and nonepi-
thelial cells (31, 32). ALDO, as well as glucocorticoids, is able
to bind GR and MR with the affinity being 100-fold higher
for MR than GR (33). It is well established that the two types
of steroid receptors share structural and functional homol-
ogy, and both are transcription factors in cardiomyocytes
(34–36). In this study, homology searchers of the CT-1 pro-
moter region for transcription factors binding elements by
means of the Transfact Produktion-Planung-Steurung (PPS)
software (Transfact Industrial Software & Engineering, Heik-
endorf, Germany) led us to identify at least two putative
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steroid response elements located at around 0.9 and 1.3 kb
upstream from the transcription start site. Thus, it is reason-
able to hypothesize that, at least in vitro, either MR- or GR-
ligand complexes might bind these target sites to induce CT-1
expression. Concerning the in vivo context, recent studies in
the field of MR vs. GR specificity in cardiovascular cortico-
steroids actions indicate that the importance of MR signaling
is controlled at two levels. First, it is controlled by prereceptor
mechanisms, i.e. mineralocorticoids/glucocorticoids propor-
tion, which is mainly determined by the expression 11�-
hydroxysteroid dehydrogenase 2 and the endogenous syn-
thesis of ALDO in cardiovascular tissues (37). Second, it has
been recently proposed that the intracellular context, i.e. re-
dox state of the cell, may resolve activation of MR-dependent
signals by glucocorticoids (38, 39). Hence, further studies are
required to determine the precise corticosteroid signaling
pathway that may intervene in this response in pathophys-
iological conditions.

Increasing evidence indicates that, besides the classical
MR-dependent genomic actions, ALDO exerts a set of rapid
nongenomic effects via MR-dependent and/or MR-indepen-
dent mechanisms (40, 41). Furthermore, despite details of the
mineralocorticoid signaling are missing, available data in-
dicate that a cross talk between genomic and nongenomic

activities may be the key for understanding the real signif-
icance of mineralocorticoids in the cardiovascular system (41,
42). Hence, rapid activation of protein kinase-C induced by
ALDO is necessary for a subsequent genomic effect of the
hormone, i.e. induction of Na�/K�-ATPase expression, in
renal cells (43). Similarly, activation of c-Src tyrosine kinase
and endothelial growth factor receptor transactivation are
two rapid MR-mediated effects that support the following
ALDO-induced endothelial growth factor receptor overex-
pression in several cell lines (44). Callera et al. (26) reported
that ALDO-induced activation of c-Src and succeeding p38
MAPK phosphorylation are two nongenomic events medi-
ating the subsequent fibrogenic effect of the mineralocorti-
coid in freshly isolated aortic vascular smooth muscle cells.
Here we tested the involvement of nongenomic mechanisms
in the increase of CT-1 mRNA by analyzing the three rapid
signaling pathways that ALDO activates in cardiac cells: p38
and p42/44 MAPK, and L-type calcium channels (28, 29, 45,
46). Among the chemical blockers tested, only the p38 MAPK
inhibitor abrogated ALDO-induced CT-1 expression (Fig. 3),
suggesting a determinant role for this MAPK in this genomic
effect of ALDO. This finding is in accordance with results
previously reported demonstrating the involvement of p38
MAPK on ALDO-induced connective tissue growth factor
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up-regulation in cardiac cells (46). Furthermore, several data
presented here reinforce the possibility that ALDO-induction
of CT-1 is mediated by the cross talk of early nongenomic
mechanisms that support following genomic pathways. On
the one hand, ALDO increases p38 MAPK phosphorylation
via MR-independent and –dependent pathways without
modifying the expression of nonphosphorylated p38 MAPK,
On the other hand, the time-course analysis of p38 phos-
phorylation and CT-1 mRNA up-regulation suggests that the
first precedes the increase of cytokine expression induced by
ALDO. Thus, regarding the stage of the knowledge in min-
eralocorticoid signaling, this study adds to a novel example
of cross talk between nongenomic and genomic signals that
may clarify the mechanisms by which ALDO induces hy-
pertrophy in cardiac cells.

In summary, findings here presented suggest that cardiac
CT-1 may be up-regulated by ALDO through mechanisms
that involve MR and GR and the cross talk between rapid
nongenomic and genomic mechanisms. Furthermore,
ALDO-induced CT-1 up-regulation seems to play a role in
the ability of the mineralocorticoid to produce cardiomyo-
cyte growth, and, as a result, cardiac hypertrophy. The po-
tential clinical relevance of these findings is based on the
association between increased CT-1 and LVH observed in
essential hypertensives (19, 20) as well as the association of
increased CT-1 and left ventricular dysfunction reported in
patients with heart failure (47–49), thus setting the stage for
studies aimed to test the effects of MR antagonists on CT-1.
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