7 research outputs found

    Hepatocyte growth factor is upregulated in ischemic retina and contributes to retinal vascular leakage and neovascularization

    Get PDF
    In patients with macular edema due to ischemic retinopathy, aqueous levels of hepatocyte growth factor (HGF) correlate with edema severity. We tested whether HGF expression and activity in mice with oxygen-induced ischemic retinopathy supports a role in macular edema. In ischemic retina, HGF was increased in endogenous cells and macrophages associated with retinal neovascularization (NV). HGF activator was increased in and around retinal vessels potentially providing vascular targeting. One day after intravitreous injection of HGF, VE-cadherin was reduced and albumin levels in retina and vitreous were significantly increased indicating vascular leakage. Injection of VEGF caused higher levels of vitreous albumin than HGF, and co-injection of both growth factors caused significantly higher levels than either alone. HGF increased the number of macrophages on the retinal surface, which was blocked by anti-c-Met and abrogated in chemokine (C-C motif) ligand 2 (CCL2)−/− mice. Injection of anti-c-Met significantly decreased leakage within 24 hours and after 5 days it reduced retinal NV in mice with ischemic retinopathy, but had no effect on choroidal NV. These data indicate that HGF is a pro-permeability, pro-inflammatory, and pro-angiogenic factor and along with its activator is increased in ischemic retina providing support for a potential role of HGF in macular edema in ischemic retinopathies.Fil: Lorenc, Valeria Erika. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; Argentina. University Johns Hopkins; Estados UnidosFil: Lima e Silva, Raquel. University Johns Hopkins; Estados UnidosFil: Hackett, Sean F.. University Johns Hopkins; Estados UnidosFil: Fortmann, Seth D.. University Johns Hopkins; Estados UnidosFil: Liu, Yuanyuan. University Johns Hopkins; Estados UnidosFil: Campochiaro, Peter A.. University Johns Hopkins; Estados Unido

    Progenitor cell combination normalizes retinal vascular development in the oxygen-induced retinopathy (OIR) model

    No full text
    Retinopathy of prematurity (ROP) is a disorder of the developing retina of preterm infants. ROP can lead to blindness because of abnormal angiogenesis that is the result of suspended vascular development and vaso-obliteration leading to severe retinal stress and hypoxia. We tested the hypothesis that the use of the human progenitor cell combination, bone marrow–derived CD34+ cells and vascular wall–derived endothelial colony–forming cells (ECFCs), would synergistically protect the developing retinal vasculature in a mouse model of ROP, called oxygen-induced retinopathy (OIR). CD34+ cells alone, ECFCs alone, or the combination thereof were injected intravitreally at either P5 or P12 and pups were euthanized at P17. Retinas from OIR mice injected with ECFCs or the combined treatment revealed formation of the deep vascular plexus (DVP) while still in hyperoxia, with normal-appearing connections between the superficial vascular plexus (SVP) and the DVP. In addition, the combination of cells completely prevented aberrant retinal neovascularization and was more effective anatomically and functionally at rescuing the ischemia phenotype than either cell type alone. We show that the beneficial effects of the cell combination are the result of their ability to orchestrate an acceleration of vascular development and more rapid ensheathment of pericytes on the developing vessels. Lastly, our proteomic and transcriptomic data sets reveal pathways altered by the dual cell therapy, including many involved in neuroretinal maintenance, and principal component analysis (PCA) showed that cell therapy restored OIR retinas to a state that was closely associated with age-matched normal retinas. Together, these data herein support the use of dual cell therapy as a promising preventive treatment for the development of ROP in premature infants

    Mechanosensitive ion channels

    No full text
    corecore