659 research outputs found
Turbulence, heat-transfer, and boundary layer measurements in a conical nozzle with a controlled inlet velocity profile
Turbulence, heat transfer, and boundary layer measurements in conical nozzl
Mixing-induced fluid destratification and ullage condensation
In many applications, on-orbit storage and transfer of cryogens will require forced mixing to control tank pressure without direct venting to space. During a no-vent transfer or during operation of a thermodynamic vent system in a cryogen storage tank, pressure control is achieved by circulating cool liquid to the liquid-vapor interface to condense some of the ullage vapor. To measure the pressure and temperature response rates in mixing-induced condensation, an experiment has been developed using Freon 11 to simulate the two-phase behavior of a cryogen. A thin layer at the liquid surface is heated to raise the tank pressure, and then a jet mixer is turned on to circulate the liquid, cool the surface, and reduce the pressure. Many nozzle configurations and flow rates are used. Tank pressure and the temperature profiles in the ullage and the liquid are measured. Initial data from this ground test are shown correlated with normal-gravity and drop-tower dye-mixing data. Pressure collapse times are comparable to the dye-mixing times, whereas the times needed for complete thermal mixing are much longer than the dye-mixing times
Fermi Coordinates for Weak Gravitational Fields
A Reference is corrected. (We derive the Fermi coordinate system of an
observer in arbitrary motion in an arbitrary weak gravitational field valid to
all orders in the geodesic distance from the worldline of the observer. In flat
space-time this leads to a generalization of Rindler space for arbitrary
acceleration and rotation. The general approach is applied to the special case
of an observer resting with respect to the weak gravitational field of a static
mass distribution. This allows to make the correspondence between general
relativity and Newtonian gravity more precise.)Comment: 7 Pages, Preprint KONS-RGKU-94-04, LaTe
Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review
Some random mutations can confer a selective advantage to a hematopoietic stem cell. As a result, mutated hematopoietic stem cells can give rise to a significant proportion of mutated clones of blood cells. This event is known as “clonal hematopoiesis.” Clonal hematopoiesis is closely associated with age, and carriers show an increased risk of developing blood cancers. Clonal hematopoiesis of indeterminate potential is defined by the presence of clones carrying a mutation associated with a blood neoplasm without obvious hematological malignancies. Unexpectedly, in recent years, it has emerged that clonal hematopoiesis of indeterminate potential carriers also have an increased risk of developing cardiovascular disease. Mechanisms linking clonal hematopoiesis of indeterminate potential to cardiovascular disease are only partially known. Findings in animal models indicate that clonal hematopoiesis of indeterminate potential-related mutations amplify inflammatory responses. Consistently, clinical studies have revealed that clonal hematopoiesis of indeterminate potential carriers display increased levels of inflammatory markers. In this review, we describe progress in our understanding of clonal hematopoiesis in the context of cancer, and we discuss the most recent findings linking clonal hematopoiesis of indeterminate potential and cardiovascular diseases
Adhesion of surfaces via particle adsorption: Exact results for a lattice of fluid columns
We present here exact results for a one-dimensional gas, or fluid, of
hard-sphere particles with attractive boundaries. The particles, which can
exchange with a bulk reservoir, mediate an interaction between the boundaries.
A two-dimensional lattice of such one-dimensional gas `columns' represents a
discrete approximation of a three-dimensional gas of particles between two
surfaces. The effective particle-mediated interaction potential of the
boundaries, or surfaces, is calculated from the grand-canonical partition
function of the one-dimensional gas of particles, which is an extension of the
well-studied Tonks gas. The effective interaction potential exhibits two
minima. The first minimum at boundary contact reflects depletion interactions,
while the second minimum at separations close to the particle diameter results
from a single adsorbed particle that crosslinks the two boundaries. The second
minimum is the global minimum for sufficiently large binding energies of the
particles. Interestingly, the effective adhesion energy corresponding to this
minimum is maximal at intermediate concentrations of the particles.Comment: to appear in Journal of Statistical Mechanics: Theory and Experimen
Wall-Fluid and Liquid-Gas Interfaces of Model Colloid-Polymer Mixtures by Simulation and Theory
We perform a study of the interfacial properties of a model suspension of
hard sphere colloids with diameter and non-adsorbing ideal polymer
coils with diameter . For the mixture in contact with a planar hard
wall, we obtain from simulations the wall-fluid interfacial free energy,
, for size ratios and 1, using
thermodynamic integration, and study the (excess) adsorption of colloids,
, and of polymers, , at the hard wall. The interfacial
tension of the free liquid-gas interface, , is obtained following
three different routes in simulations: i) from studying the system size
dependence of the interfacial width according to the predictions of capillary
wave theory, ii) from the probability distribution of the colloid density at
coexistence in the grand canonical ensemble, and iii) for statepoints where the
colloidal liquid wets the wall completely, from Young's equation relating
to the difference of wall-liquid and wall-gas interfacial
tensions, . In addition, we calculate , and using density functional theory and a scaled particle
theory based on free volume theory. Good agreement is found between the
simulation results and those from density functional theory, while the results
from scaled particle theory quantitatively deviate but reproduce some essential
features. Simulation results for obtained from the three
different routes are all in good agreement. Density functional theory predicts
with good accuracy for high polymer reservoir packing fractions,
but yields deviations from the simulation results close to the critical point.Comment: 23 pages, 10 figures, REVTEX. Fig 5a changed. Final versio
Virtual Art Therapy. Application of Michelangelo Effect to Neurorehabilitation of Patients with Stroke
In neurorehabilitation, some studies reported the effective use of art therapy for reducing psychological disorders and for enhancing physical functions and cognitive abilities. Neuroaesthetical studies showed that seeing an art masterpiece can spontaneously elicit a widespread brain arousal, also involving motor networks. To combine contemplative and performative benefits of art therapy protocols, we have developed an immersive virtual reality system, giving subjects the illusion that they are able to paint a copy of famous artistic paintings. We previously observed that during this virtual task, subjects perceived less fatigue and performed more accurate movements than when they were asked to color the virtual canvas. We named this upshot the Michelangelo effect. The aim of this study was to test the rehabilitative efficacy of our system. Ten patients with stroke in the subacute phase were enrolled and trained for one month with virtual art therapy (VAT) and physiotherapy. Their data were compared with those of ten patients matched for pathology, age and clinical parameters, trained only with conventional therapy for the same amount of time. The VAT group showed a significantly higher improvements in the Barthel Index score, a measure of independency in activities of daily living (66 ± 33% vs. 31 ± 28%, p = 0.021), and in pinching strength (66 ± 39% vs. 18 ± 33%, p = 0.008), with respect to the group treated with conventional rehabilitation
Hard sphere crystallization gets rarer with increasing dimension
We recently found that crystallization of monodisperse hard spheres from the
bulk fluid faces a much higher free energy barrier in four than in three
dimensions at equivalent supersaturation, due to the increased geometrical
frustration between the simplex-based fluid order and the crystal [J.A. van
Meel, D. Frenkel, and P. Charbonneau, Phys. Rev. E 79, 030201(R) (2009)]. Here,
we analyze the microscopic contributions to the fluid-crystal interfacial free
energy to understand how the barrier to crystallization changes with dimension.
We find the barrier to grow with dimension and we identify the role of
polydispersity in preventing crystal formation. The increased fluid stability
allows us to study the jamming behavior in four, five, and six dimensions and
compare our observations with two recent theories [C. Song, P. Wang, and H. A.
Makse, Nature 453, 629 (2008); G. Parisi and F. Zamponi, Rev. Mod. Phys, in
press (2009)].Comment: 15 pages, 5 figure
On the propagation of electromagnetic radiation in the field of a plane gravitational wave
The propagation of free electromagnetic radiation in the field of a plane
gravitational wave is investigated. A solution is found one order of
approximation beyond the limit of geometrical optics in both
transverse--traceless (TT) gauge and Fermi Normal Coordinate (FNC) system. The
results are applied to the study of polarization perturbations. Two
experimental schemes are investigated in order to verify the possibility to
observe these perturbations, but it is found that the effects are exceedingly
small.Comment: 13 pages; revtex; accepted for publication in Class. Quantum Gra
- …