7,892 research outputs found

    Ecotoxicity of hallachrome, an unusual 1-2 anthraquinone excreted by the infaunal polychaete Halla parthenopeia: evidence for a chemical defence?

    Get PDF
    Polychaetes play a prominent role in marine systems, but little is known about their secondary metabolites compared with other benthic taxa. In the present study, we investigated the toxicity of hallachrome, an unusual 1-2 anthraquinone identified from the skin of some polychaetes, including the Mediterranean infaunal species Halla parthenopeia. Under stress conditions, this worm releases a harmful purple mucus, whose noxious compounds were still unknown. We hypothesized that hallachrome also occurs in the purple mucus, giving rise to its color and toxicity. Soon after the production of the purple exudate, H. parthenopeia also secretes a harmless, transparent mucus, which pushes away the toxic one, suggesting protective functions for the worm itself. LC-MS and H-1-NMR analyses confirmed the presence of the pigment hallachrome in the purple mucus. The average concentration of the pigment in the purple mucus was about 310 mg L-1. Ecotoxicological bioassays on representative species of bacteria, protozoans, rotifers, crustaceans (Artemia franciscana) and polychaetes (Dinophilus gyrociliatus) revealed its severe toxic effects: LC50/EC(50)values ranged from 0.11-5.67 mg L-1. Hallachrome showed higher toxicity for A. franciscana than other naturally occurring anthraquinones. Tests on encapsulated embryos of D. gyrociliatus evidenced the ability of a mucus layer to limit hallachrome diffusion, confirming the protective role of the transparent mucus. Given the information available on polychaetes anti-predator strategies, hallachrome cannot be considered a consumer deterrent. However its toxicity and wide range of activity suggest chemical defensive functions against potential competitors, parasites and/or pathogens

    Drug-Induced Psychosis: How to Avoid Star Gazing in Schizophrenia Research by Looking at More Obvious Sources of Light

    Get PDF
    The prevalent view today is that schizophrenia is a syndrome rather than a specific disease. Liability to schizophrenia is highly heritable. It appears that multiple genetic and environmental factors operate together to push individuals over a threshold into expressing the characteristic clinical picture. One environmental factor which has been curiously neglected is the evidence that certain drugs can induce schizophrenia-like psychosis. In the last 60 years, improved understanding of the relationship between drug abuse and psychosis has contributed substantially to our modern view of the disorder suggesting that liability to psychosis in general, and to schizophrenia in particular, is distributed trough the general population in a similar continuous way to liability to medical disorders such as hypertension and diabetes. In this review we examine the main hypotheses resulting from the link observed between the most common psychotomimetic drugs (lysergic acid diethylamide, amphetamines, cannabis, phencyclidine) and schizophrenia

    NEW SECONDARY METABOLITES IN THE AMPHINOMID FIREWORM HERMODICE CARUNCULATA

    Get PDF
    Eight betaine-derived novel compounds were found in extracts of the Mediterranean stinging fireworm Hermodice carunculata. The identification of their structures relies on 1D and 2D NMR (Fig. 1-3) and HPLC-ESI/HRMS spectra. Two types of terminal ammonium portions A and B and a series of different alkyl chains were identified (Fig. 4a,b). Their matching provides the structures of uncharacterized secondary metabolites, named carunculines, and their related isomers. These molecules differ from already known trimethylammonium inflammatory compounds (i.e. complanines) isolated from another amphinomid species, for the structures of the terminal ammonium groups (Fig. 4c) [1]. Carunculine anatomical distribution within H. carunculata was assessed by screening through HPLC-ESI/HRMS (Fig. 5, Table 1): their occurrence was revealed in all the body parts analyzed, both involved in predator-prey interactions [2], and mainly in the digestive apparatus. The results achieved reveal an array of different novel compounds from a chemically unknown species, improving knowledge on Marine Animal Products with chemical and biological potential for bioprospection [3]. Overall, these data reinforce the necessity of studying poorly-investigated taxa to expand knowledge on animal venom biology, their mechanisms of action and exploitation as promising source of drug molecule

    The MAGIC Experiment and Its First Results

    Full text link
    With its diameter of 17m, the MAGIC telescope is the largest Cherenkov detector for gamma ray astrophysics. It is sensitive to photons above an energy of 30 GeV. MAGIC started operations in October 2003 and is currently taking data. This report summarizes its main characteristics, its rst results and its potential for physics.Comment: 6 pages, 3 figures, to be published in the Proceedings of the 6th International Symposium ''Frontiers of Fundamental and Computational Physics'' (FFP6), Udine (Italy), Sep. 26-29, 200
    corecore