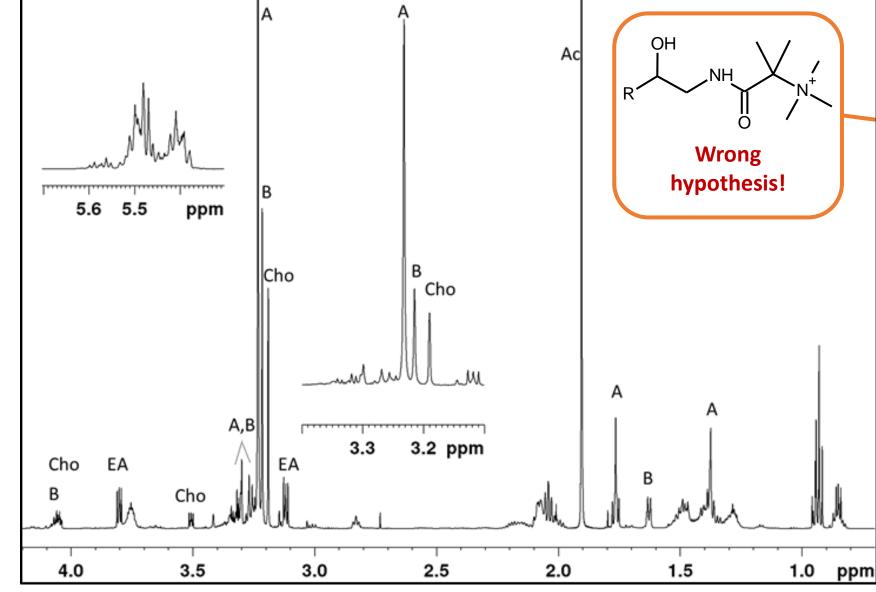


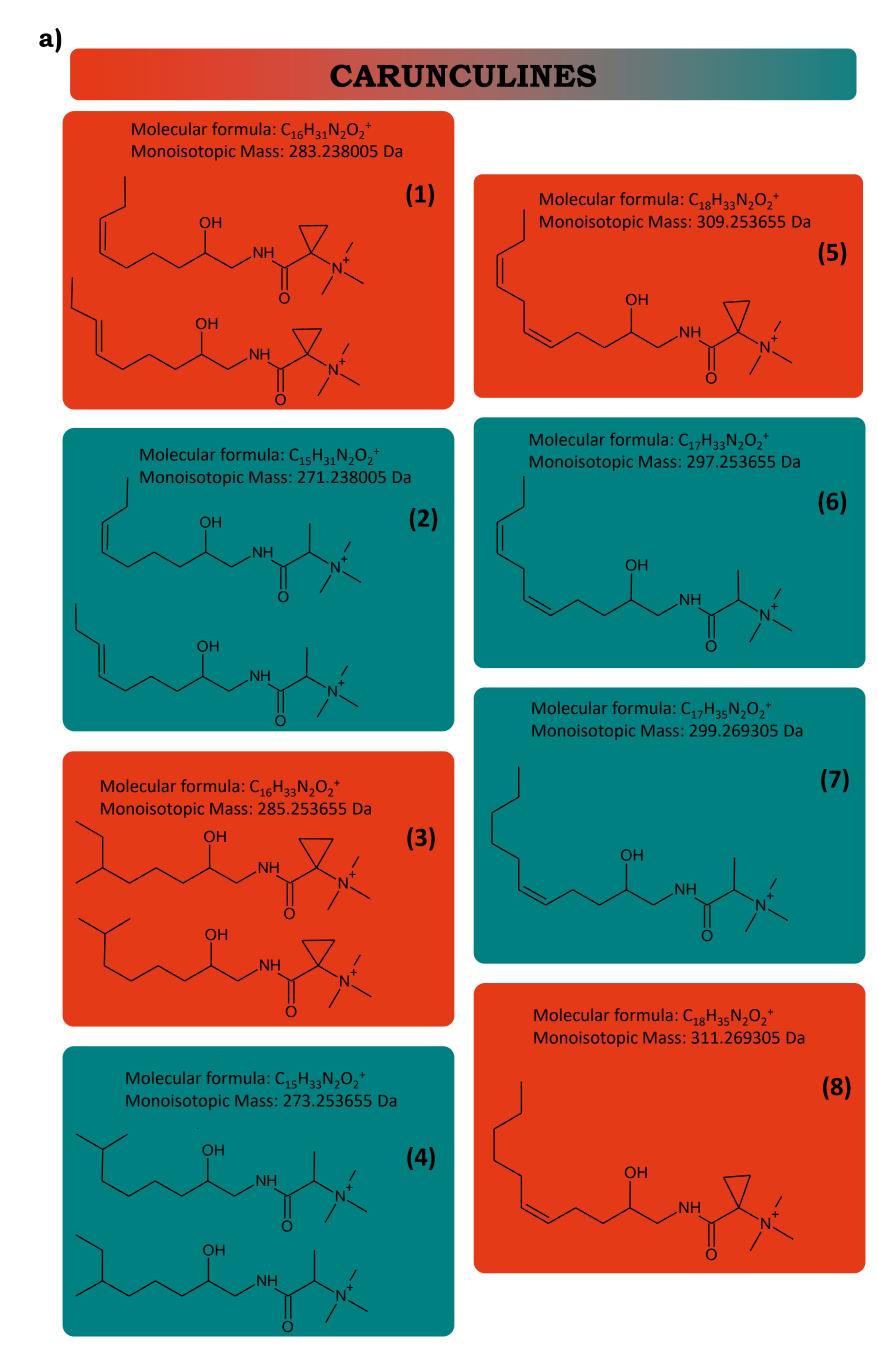
Gruppo Italiano Discussione Risonanze | Magnetiche

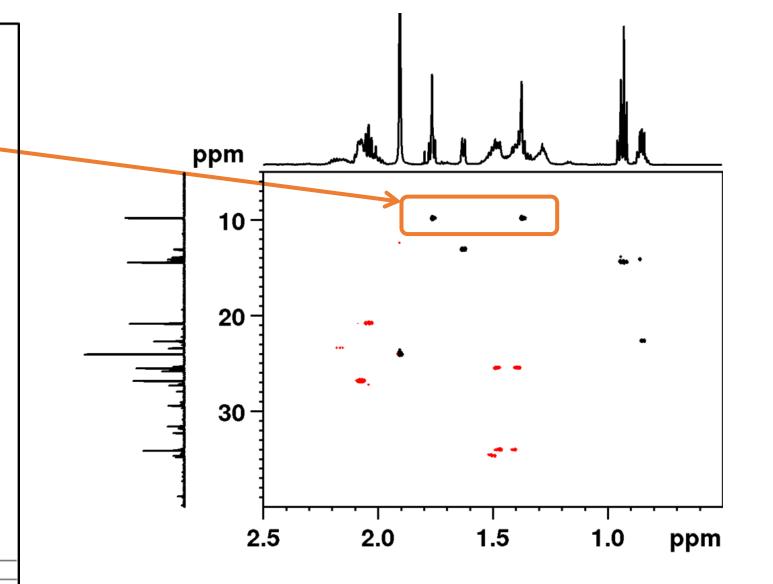
NEW SECONDARY METABOLITES IN THE AMPHINOMID FIREWORM HERMODICE CARUNCULATA

<u>A. Mucci</u>,¹ L. Forti,² R. Simonini,³ V. Ferrari, ³ D. Prevedelli,³ S. Righi³

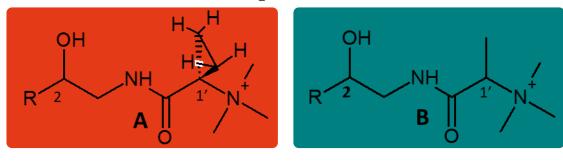

¹ Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
² Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
³ Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 213/D, 41125 Modena, Italy
E-mail: adele.mucci@unimore.it

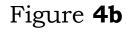
Eight betaine-derived novel compounds were found in extracts of the Mediterranean stinging fireworm *Hermodice carunculata*. The identification of their structures relies on 1D and 2D NMR (Fig. 1-3) and HPLC-ESI/HRMS spectra. Two types of terminal ammonium portions A and B and a series of different alkyl chains were identified (Fig. 4a,b). Their matching provides the structures of uncharacterized secondary metabolites, named **carunculines**, and their related isomers. These molecules differ from already known trimethylammonium inflammatory compounds (i.e. complanines) isolated from another amphinomid species, for the structures of the terminal ammonium groups (Fig. 4c) [1]. **Carunculine** anatomical distribution within *H. carunculata* was assessed by screening through HPLC-ESI/HRMS (Fig. 5, Table 1): their occurrence was revealed in all the body parts analyzed, both involved in predator-prey interactions [2], and mainly in the digestive apparatus. The results achieved reveal an array of different novel compounds from a chemically unknown species, improving knowledge on Marine Animal Products with chemical and biological potential for bioprospection [3]. Overall, these data reinforce the necessity of studying poorly-investigated taxa to expand knowledge on animal venom biology, their mechanisms of action and exploitation as promising source of drug molecules.

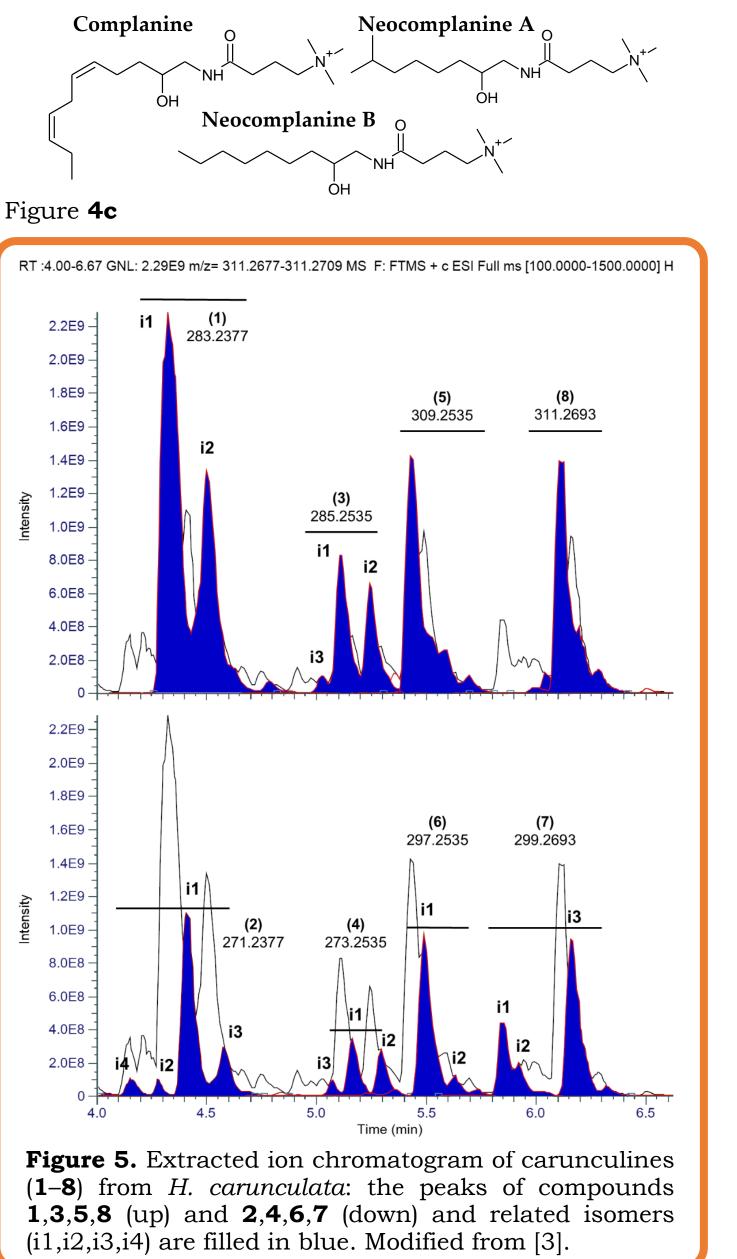

– Pitfalls of NMR spectra –

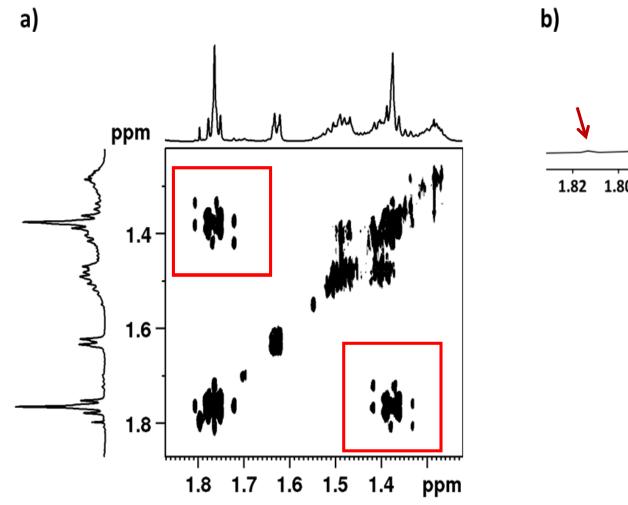

Our first hypothesis, based on ¹H and H,C-HSQCed spectra (Fig. 1 and 2), was wrong. The sign of H,C correlations in HSQCed spectrum is deceiving for

cyclopropanes (${}^{1}J(H,C)$ around 160 Hz): methylenes seem methyl signals but in the COSY spectrum the intensity of the "long range" correlations between what should have been geminal CH₃ signals were abnormally high and with a too symmetric shape... (Fig. 3) and ${}^{13}C$ chemical shift (around 10 ppm) was too low.


Figure 1. ¹H spectrum in D_2O of *H. carunculata* extract. Diagnostic signals of carunculines are marked with A and B. Cho = choline, EA = ethanolamine. Modified from [3].






Figure 2. Enlarged regions of the H,C-HSQCed NMR spectrum. In the black rectangle, the correlation between the protons and the carbon of the cyclopropane ring, with the same sign of methyl and methyne correlations. Modified from [3].

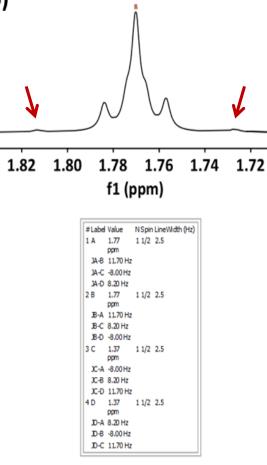

Terminal ammonium portions of carunculines

Figure 3. Enlarged region of the H,H-COSY NMR spectrum of carunculines. a) The red square shows the correlation between the AA' and BB' protons of the cyclopropane ring. b) spin-system simulation showing the shape of one of the two multiplets of the AA'BB' system (MestReNova v 14.1.2-25024). Modified from [3].

Table 1. Relevant MS/MS fragments identified in carunculines with A (1,3,5,8) and B (2,4,6,7) using HPLC-ESI/HRMS. The fragmentation pathways are completely different, corroborating the proposed structures. Modified from [3].

Carunculine 1 (<i>m</i> /z 283.2377)		Carunculine 3 (<i>m</i> / <i>z</i> 285.2535)		Carunculine 5 (<i>m</i> / <i>z</i> 309.2535)		Carunculine 8 (<i>m</i> / <i>z</i> 311.2693)		Proposed molecula
MS/MS fragments		MS/MS fragments		MS/MS fragments		MS/MS fragments		structure formula
58.0659		58.0659		58.0659		58.0659		CH2=N(CH
60.0815		60.0815		60.0815		60.0815		NH(CH3)
67.0549		67.0549		67.0549		67.0549		C5H7 ⁺
84.0813		84.0813		84.0813		84.0813		N ⁺
95.0859		95.0859		95.0859		95.0859		C7H11 ⁺
98.0967		98.0967		98.0968		98.0967		N ⁺
116.1071		116.1071		116.1071		116.1071		C ₆ H ₁₄ NO
123.1168		123.1168		/		123.1169		C9H15 ⁺
143.1177		143.1178		143.1178		143.1178		H_2N
	<u>neutral</u> loss, m		<u>neutral</u> loss, m		<u>neutral</u> <u>loss, m</u>		<u>neutral</u> loss, m	0
170.1536	<u>113.084</u>	172.1693	<u>113.084</u>	196.1692	<u>113.0843</u>	198.1850	<u>113.0843</u>	
198.1850	<u>85.053</u>	200.2006	<u>85.0529</u>	224.2007	<u>85.0528</u>	226.2163	<u>85.0530</u>	- 11 NH2
265.2270	<u>18.011</u>	267.2426	<u>18.0107</u>	291.2426	<u>18.0109</u>	293.2582	<u>18.0111</u>	- H ₂ O

Figure 4. Proposed structures for carunculines and molecular structures of complanines. **a**) Proposed molecular structures for carunculines (**1**–**8**) and their isomers derived by matching the structures obtained by NMR spectra and the formulae obtained by HPLC-ESI/HRMS data. **b**) terminal ammonium portion (A) or (B); **c**) molecular structures of complanine and neocomplanines. Modified from [3].

	Terminal ammonium portion (B)												
Carunculine 2 (<i>m</i> / <i>z</i> 271.2377) <i>MS/MS</i>		Carunculine 4 (<i>m</i> / <i>z</i> 273.2535) <i>MS/MS</i>		Carunculine 6 (<i>m</i> / <i>z</i> 297.2535) <i>MS/MS</i>		Carunculine 7 (<i>m</i> / <i>z</i> 299.2693) <i>MS/MS</i>		Proposed molecular structure / formula					
<u>fragments</u> 58.0659		<u>fragments</u> 58.0659		<u>fragments</u> 58.0659		<u>fragments</u> 58.0659		CH2=N(CH3)2+					
60.0815		60.0815		60.0815		60.0815		NH(CH3)3 ⁺					
67.0549		67.0549		67.0549		67.0549		C5H7 ⁺					
81.0704		81.0704		81.0704		81.0704							
								C ₆ H ₉ +					
95.0859		95.0859		95.0859		95.0859		C7H11 ⁺					
123.1168		123.1168		123.1170		123.1169		C9H15 ⁺					
	neutral		<u>neutral</u>		<u>neutral</u>		<u>neutral</u>						
	<u>loss, </u> m		<u>loss, </u> m		<u>loss, </u> m		<u>loss, </u> m						
140.1432	<u>131.0945</u>	142.1589	<u>131.0946</u>	166.1591	<u>131.0944</u>	168.1746	<u>131.0947</u>	- 0 _+					
166.159	105.0787	168.1745	<u>105.079</u>	192.1741	<u>105.0794</u>	194.1902	<u>105.0791</u>	- H2O - N(CH3)3 - CO					
184.1694	87.0683	186.1851	87.0684	210.1848	87.0687	212.2007	87.0686	- N(CH3)3 - CO					
194.1539	77.0838	196.1694	<u>77.0841</u>	220.1649	<u>77.0886</u>	222.1851	77.0842	- H2O - N(CH3)3					
253.2271	<u>18.0106</u>	255.2427	<u>18.0108</u>	279.2428	<u>18.0107</u>	281.2583	<u>18.0110</u>	- H2O					

[1] K. Nakamura, Y. Tachikawa, M. Kitamura, O. Ohno, M. Suganuma and D. Uemura, Org. Biomol. Chem. 6, 2058-2060 (2008); [2] R. Simonini, F. Maggioni, F. Zanetti, S. Fai, L. Forti, D. Prevedelli and S. Righi, J. Exp. Mar. Biol. Ecol. 534, 151487 (2021); [3] S. Righi, L. Forti, R. Simonini, V. Ferrari, D. Prevedelli and A. Mucci, Mar. Drugs (2022), accepted.