2,210 research outputs found

    Test of Information Theory on the Boltzmann Equation

    Get PDF
    We examine information theory using the steady-state Boltzmann equation. In a nonequilibrium steady-state system under steady heat conduction, the thermodynamic quantities from information theory are calculated and compared with those from the steady-state Boltzmann equation. We have found that information theory is inconsistent with the steady-state Boltzmann equation.Comment: 12 page

    Thermal Expansion and Magnetostriction Studies of a Kondo Lattice Compound: Ceagsb2

    Full text link
    We have investigated a single crystal of CeAgSb2 using low field ac-susceptibility, thermal expansion and magnetostriction measurements in the temperature range 1.5K to 90K. The ac-susceptibility exhibits a sharp peak at 9.7K for both B//c and B perp c due to the magnetic ordering of the Ce moment. The thermal expansion coefficient alpha, exhibits highly anisotropic behaviour between 3K and 80K : alpha is positive for dL/L perp c, but negative for dL/L // c. Furthermore, alpha (for dL/L) perp c (i.e. in ab-plane) exhibits a sharp peak at TN followed by a broad maximum at 20K, while a sharp negative peak at TN followed by a minimum at 20K has been observed for (dL/L //) the c direction. The observed maximum and minimum in alpha(T) at 20K have been attributed to the crystalline field effect on the J=5/2 state of the Ce3+ ion. The magnetostriction also exhibits anisotropic behaviour with a large magnetostriction along the c-axis. The ab-plane magnetostriction exhibits a peak at B=3.3T at 3K, which is consistent with the observed peak in the magnetoresistance measurements.Comment: 4 Pages (B5), 3 figures, submitted to SCES200

    Preprototype nitrogen supply subsystem development

    Get PDF
    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size

    On the iterated Crank-Nicolson for hyperbolic and parabolic equations in numerical relativity

    Full text link
    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion.Comment: 7 pages, 3 figure

    A Bose-Einstein condensate in a random potential

    Full text link
    An optical speckle potential is used to investigate the static and dynamic properties of a Bose-Einstein condensate in the presence of disorder. For strong disorder the condensate is localized in the deep wells of the potential. With smaller levels of disorder, stripes are observed in the expanded density profile and strong damping of dipole and quadrupole oscillations is seen. Uncorrelated frequency shifts of the two modes are measured for a weak disorder and are explained using a sum-rules approach and by the numerical solution of the Gross-Pitaevskii equation

    Effect of optical disorder and single defects on the expansion of a Bose-Einstein condensate in a one-dimensional waveguide

    Full text link
    We investigate the one-dimensional expansion of a Bose-Einstein condensate in an optical guide in the presence of a random potential created with optical speckles. With the speckle the expansion of the condensate is strongly inhibited. A detailed investigation has been carried out varying the experimental conditions and checking the expansion when a single optical defect is present. The experimental results are in good agreement with numerical calculations based on the Gross-Pitaevskii equation.Comment: 5 pages, 5 figure

    Atomtronics: ultracold atom analogs of electronic devices

    Full text link
    Atomtronics focuses on atom analogs of electronic materials, devices and circuits. A strongly interacting ultracold Bose gas in a lattice potential is analogous to electrons in solid-state crystalline media. As a consequence of the band structure, cold atoms in a lattice can exhibit insulator or conductor properties. P-type and N-type material analogs can be created by introducing impurity sites into the lattice. Current through an atomtronic wire is generated by connecting the wire to an atomtronic battery which maintains the two contacts at different chemical potentials. The design of an atomtronic diode with a strongly asymmetric current-voltage curve exploits the existence of superfluid and insulating regimes in the phase diagram. The atomtronic analog of a bipolar junction transistor exhibits large negative gain. Our results provide the building blocks for more advanced atomtronic devices and circuits such as amplifiers, oscillators and fundamental logic gates

    Spatial patterns and scale freedom in a Prisoner's Dilemma cellular automata with Pavlovian strategies

    Full text link
    A cellular automaton in which cells represent agents playing the Prisoner's Dilemma (PD) game following the simple "win-stay, loose-shift" strategy is studied. Individuals with binary behavior, such as they can either cooperate (C) or defect (D), play repeatedly with their neighbors (Von Neumann's and Moore's neighborhoods). Their utilities in each round of the game are given by a rescaled payoff matrix described by a single parameter Tau, which measures the ratio of 'temptation to defect' to 'reward for cooperation'. Depending on the region of the parameter space Tau, the system self-organizes - after a transient - into dynamical equilibrium states characterized by different definite fractions of C agents (2 states for the Von Neumann neighborhood and 4 for Moore neighborhood). For some ranges of Tau the cluster size distributions, the power spectrums P(f) and the perimeter-area curves follow power-law scalings. Percolation below threshold is also found for D agent clusters. We also analyze the asynchronous dynamics version of this model and compare results.Comment: Accepted for publication in JSTA

    Routes towards Anderson-Like localization of Bose-Einstein condensates in disordered optical lattices

    Full text link
    We investigate, both experimentally and theoretically, possible routes towards Anderson-like localization of Bose-Einstein condensates in disordered potentials. The dependence of this quantum interference effect on the nonlinear interactions and the shape of the disorder potential is investigated. Experiments with an optical lattice and a superimposed disordered potential reveal the lack of Anderson localization. A theoretical analysis shows that this absence is due to the large length scale of the disorder potential as well as its screening by the nonlinear interactions. Further analysis shows that incommensurable superlattices should allow for the observation of the cross-over from the nonlinear screening regime to the Anderson localized case within realistic experimental parameters.Comment: 4 pages to appear in Phys. Rev. Let

    Optically-induced lensing effect on a Bose-Einstein condensate expanding in a moving lattice

    Full text link
    We report the experimental observation of a lensing effect on a Bose-Einstein condensate expanding in a moving 1D optical lattice. The effect of the periodic potential can be described by an effective mass dependent on the condensate quasi-momentum. By changing the velocity of the atoms in the frame of the optical lattice we induce a focusing of the condensate along the lattice direction. The experimental results are compared with the numerical predictions of an effective 1D theoretical model. Besides, a precise band spectroscopy of the system is carried out by looking at the real-space propagation of the atomic wavepacket in the optical lattice.Comment: 5 pages, 4 figures; minor changes applied and typos corrected; a new paragraph added; some references updated; journal reference adde
    corecore