7,525 research outputs found

    Fractional Operators, Dirichlet Averages, and Splines

    Full text link
    Fractional differential and integral operators, Dirichlet averages, and splines of complex order are three seemingly distinct mathematical subject areas addressing different questions and employing different methodologies. It is the purpose of this paper to show that there are deep and interesting relationships between these three areas. First a brief introduction to fractional differential and integral operators defined on Lizorkin spaces is presented and some of their main properties exhibited. This particular approach has the advantage that several definitions of fractional derivatives and integrals coincide. We then introduce Dirichlet averages and extend their definition to an infinite-dimensional setting that is needed to exhibit the relationships to splines of complex order. Finally, we focus on splines of complex order and, in particular, on cardinal B-splines of complex order. The fundamental connections to fractional derivatives and integrals as well as Dirichlet averages are presented

    Single-particle and collective excitations in a charged Bose gas at finite temperature

    Full text link
    The main focus of this work is on the predictions made by the dielectric formalism in regard to the relationship between single-particle and collective excitation spectra in a gas of point-like charged bosons at finite temperature TT below the critical region of Bose-Einstein condensation. Illustrative numerical results at weak coupling (rs=1r_s = 1) are presented within the Random Phase Approximation. We show that within this approach the single-particle spectrum forms a continuum extending from the transverse to the longitudinal plasma mode frequency and leading to a double-peak structure as TT increases, whereas the density fluctuation spectrum consists of a single broadening peak. We also discuss the momentum distribution and the superfluidity of the gas.Comment: 15 pages, 5 figure

    Numerical performances of low rank stap based on different heterogeneous clutter subspace estimators

    Get PDF
    International audienceSpace time Adaptive Processing (STAP) for airborne RADAR fits the context of a disturbance composed of a Low Rank (LR) clutter, here modeled by a Compound Gaussian (CG) process, plus a white Gaussian noise (WGN). In such context, the corresponding LR adaptive filters used to detect a target require less training vectors than classical methods to reach equivalent performance. Unlike the classical filter which is based on the Covariance Matrix (CM) of the noise, the LR filter is based on the clutter subspace projector, which is usually derived from a Singular Value Decomposition (SVD) of a noise CM estimate. Regarding to the considered model of LR-CG plus WGN, recent results are providing both direct estimators of the clutter subspace [1][2] and an exact MLE of the noise CM [3]. To promote the use of these new estimation methods, this paper proposes to apply them to realistic STAP simulations

    Conserved Density Fluctuation and Temporal Correlation Function in HTL Perturbation Theory

    Full text link
    Considering recently developed Hard Thermal Loop perturbation theory that takes into account the effect of the variation of the external field through the fluctuations of a conserved quantity we calculate the temporal component of the Euclidian correlation function in the vector channel. The results are found to be in good agreement with the very recent results obtained within the quenched approximation of QCD and small values of the quark mass (∼0.1T\sim 0.1T) on improved lattices of size 1283×Nτ128^3\times N_\tau at (Nτ=40, T=1.2TCN_\tau=40, \ T=1.2T_C), (Nτ=48, T=1.45TCN_\tau=48, \ T=1.45T_C), and (Nτ=16, T=2.98TCN_\tau=16, \ T=2.98T_C), where NτN_\tau is the temporal extent of the lattice. This suggests that the results from lattice QCD and Hard Thermal Loop perturbation theory are in close proximity for a quantity associated with the conserved density fluctuation.Comment: 16 pages, 4 figures; One para added in introduction, Fig 1 modified; Accepted in Phys. Rev.

    Breakdown of Hydrodynamic Transport Theory in the Ordered Phase of Helimagnets

    Full text link
    It is shown that strong fluctuations preclude a hydrodynamic description of transport phenomena in helimagnets, such as MnSi, at T>0. This breakdown of hydrodynamics is analogous to the one in chiral liquid crystals. Mode-mode coupling effects lead to infinite renormalizations of various transport coefficients, and the actual macroscopic description is nonlocal. At T=0 these effects are weakened due to the fluctuation-dissipation theorem, and the renormalizations remain finite. Observable consequences of these results, as manifested in the neutron scattering cross-section, are discussedComment: 4pp., 1 eps figur

    The size-star formation relation of massive galaxies at 1.5<z<2.5

    Full text link
    We study the relation between size and star formation activity in a complete sample of 225 massive (M > 5 x 10^10 Msun) galaxies at 1.5<z<2.5, selected from the FIREWORKS UV-IR catalog of the CDFS. Based on stellar population synthesis model fits to the observed restframe UV-NIR SEDs, and independent MIPS 24 micron observations, 65% of galaxies are actively forming stars, while 35% are quiescent. Using sizes derived from 2D surface brightness profile fits to high resolution (FWHM_{PSF}~0.45 arcsec) groundbased ISAAC data, we confirm and improve the significance of the relation between star formation activity and compactness found in previous studies, using a large, complete mass-limited sample. At z~2, massive quiescent galaxies are significantly smaller than massive star forming galaxies, and a median factor of 0.34+/-0.02 smaller than galaxies of similar mass in the local universe. 13% of the quiescent galaxies are unresolved in the ISAAC data, corresponding to sizes <1 kpc, more than 5 times smaller than galaxies of similar mass locally. The quiescent galaxies span a Kormendy relation which, compared to the relation for local early types, is shifted to smaller sizes and brighter surface brightnesses and is incompatible with passive evolution. The progenitors of the quiescent galaxies, were likely dominated by highly concentrated, intense nuclear star bursts at z~3-4, in contrast to star forming galaxies at z~2 which are extended and dominated by distributed star formation.Comment: 6 pages, 4 figures, accepted for publication in Ap

    Effects of disorder on quantum fluctuations and superfluid density of a Bose-Einstein condensate in a two-dimensional optical lattice

    Full text link
    We investigate a Bose-Einstein condensate trapped in a 2D optical lattice in the presence of weak disorder within the framework of the Bogoliubov theory. In particular, we analyze the combined effects of disorder and an optical lattice on quantum fluctuations and superfluid density of the BEC system. Accordingly, the analytical expressions of the ground state energy and quantum depletion of the system are obtained. Our results show that the lattice still induces a characteristic 3D to 1D crossover in the behavior of quantum fluctuations, despite the presence of weak disorder. Furthermore, we use the linear response theory to calculate the normal fluid density of the condensate induced by disorder. Our results in the 3D regime show that the combined presence of disorder and lattice induce a normal fluid density that asymptotically approaches 4/3 of the corresponding condensate depletion. Conditions for possible experimental realization of our scenario are also proposed.Comment: 8 pages, 0 figure. To appear in Physical Review

    Dynamic correlations in stochastic rotation dynamics

    Full text link
    The dynamic structure factor, vorticity and entropy density dynamic correlation functions are measured for Stochastic Rotation Dynamics (SRD), a particle based algorithm for fluctuating fluids. This allows us to obtain unbiased values for the longitudinal transport coefficients such as thermal diffusivity and bulk viscosity. The results are in good agreement with earlier numerical and theoretical results, and it is shown for the first time that the bulk viscosity is indeed zero for this algorithm. In addition, corrections to the self-diffusion coefficient and shear viscosity arising from the breakdown of the molecular chaos approximation at small mean free paths are analyzed. In addition to deriving the form of the leading correlation corrections to these transport coefficients, the probabilities that two and three particles remain collision partners for consecutive time steps are derived analytically in the limit of small mean free path. The results of this paper verify that we have an excellent understanding of the SRD algorithm at the kinetic level and that analytic expressions for the transport coefficients derived elsewhere do indeed provide a very accurate description of the SRD fluid.Comment: 33 pages including 16 figure

    Fractional Fokker-Planck Equation for Fractal Media

    Full text link
    We consider the fractional generalizations of equation that defines the medium mass. We prove that the fractional integrals can be used to describe the media with noninteger mass dimensions. Using fractional integrals, we derive the fractional generalization of the Chapman-Kolmogorov equation (Smolukhovski equation). In this paper fractional Fokker-Planck equation for fractal media is derived from the fractional Chapman-Kolmogorov equation. Using the Fourier transform, we get the Fokker-Planck-Zaslavsky equations that have fractional coordinate derivatives. The Fokker-Planck equation for the fractal media is an equation with fractional derivatives in the dual space.Comment: 17 page
    • …
    corecore