2,379 research outputs found

    Derivation of an eigenvalue probability density function relating to the Poincare disk

    Full text link
    A result of Zyczkowski and Sommers [J.Phys.A, 33, 2045--2057 (2000)] gives the eigenvalue probability density function for the top N x N sub-block of a Haar distributed matrix from U(N+n). In the case n \ge N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition, and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A^{-1} B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many body quantum state, and to the one-component plasma, on the pseudosphere.Comment: 11 pages; To appear in J.Phys

    Growth models, random matrices and Painleve transcendents

    Full text link
    The Hammersley process relates to the statistical properties of the maximum length of all up/right paths connecting random points of a given density in the unit square from (0,0) to (1,1). This process can also be interpreted in terms of the height of the polynuclear growth model, or the length of the longest increasing subsequence in a random permutation. The cumulative distribution of the longest path length can be written in terms of an average over the unitary group. Versions of the Hammersley process in which the points are constrained to have certain symmetries of the square allow similar formulas. The derivation of these formulas is reviewed. Generalizing the original model to have point sources along two boundaries of the square, and appropriately scaling the parameters gives a model in the KPZ universality class. Following works of Baik and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled cumulative distribution, in which a particular Painlev\'e II transcendent plays a prominent role.Comment: 27 pages, 5 figure

    Analytic solutions of the 1D finite coupling delta function Bose gas

    Full text link
    An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite NN are given and from them results for general NN are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these new results are predicated on the Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by Phys. Rev.

    Random Matrix Theory and the Sixth Painlev\'e Equation

    Full text link
    A feature of certain ensembles of random matrices is that the corresponding measure is invariant under conjugation by unitary matrices. Study of such ensembles realised by matrices with Gaussian entries leads to statistical quantities related to the eigenspectrum, such as the distribution of the largest eigenvalue, which can be expressed as multidimensional integrals or equivalently as determinants. These distributions are well known to be τ\tau-functions for Painlev\'e systems, allowing for the former to be characterised as the solution of certain nonlinear equations. We consider the random matrix ensembles for which the nonlinear equation is the σ\sigma form of \PVI. Known results are reviewed, as is their implication by way of series expansions for the distributions. New results are given for the boundary conditions in the neighbourhood of the fixed singularities at t=0,1,∞t=0,1,\infty of σ\sigma\PVI displayed by a generalisation of the generating function for the distributions. The structure of these expansions is related to Jimbo's general expansions for the τ\tau-function of σ\sigma\PVI in the neighbourhood of its fixed singularities, and this theory is itself put in its context of the linear isomonodromy problem relating to \PVI.Comment: Dedicated to the centenary of the publication of the Painlev\'e VI equation in the Comptes Rendus de l'Academie des Sciences de Paris by Richard Fuchs in 190

    {\bf τ\tau-Function Evaluation of Gap Probabilities in Orthogonal and Symplectic Matrix Ensembles}

    Full text link
    It has recently been emphasized that all known exact evaluations of gap probabilities for classical unitary matrix ensembles are in fact τ\tau-functions for certain Painlev\'e systems. We show that all exact evaluations of gap probabilities for classical orthogonal matrix ensembles, either known or derivable from the existing literature, are likewise τ\tau-functions for certain Painlev\'e systems. In the case of symplectic matrix ensembles all exact evaluations, either known or derivable from the existing literature, are identified as the mean of two τ\tau-functions, both of which correspond to Hamiltonians satisfying the same differential equation, differing only in the boundary condition. Furthermore the product of these two τ\tau-functions gives the gap probability in the corresponding unitary symmetry case, while one of those τ\tau-functions is the gap probability in the corresponding orthogonal symmetry case.Comment: AMS-Late

    Solitons in the Calogero model for distinguishable particles

    Full text link
    We consider a large −N,- N, two-family Calogero model in the Hamiltonian, collective-field approach. The Bogomol'nyi limit appears and the corresponding solutions are given by the static-soliton configurations. Solitons from different families are localized at the same place. They behave like a paired hole and lump on the top of the uniform vacuum condensates, depending on the values of the coupling strengths. When the number of particles in the first family is much larger than that of the second family, the hole solution goes to the vortex profile already found in the one-family Calogero model.Comment: 14 pages, no figures, late

    Emergency and on-demand health care: modelling a large complex system

    No full text
    This paper describes how system dynamics was used as a central part of a whole-system review of emergency and on-demand health care in Nottingham, England. Based on interviews with 30 key individuals across health and social care, a 'conceptual map' of the system was developed, showing potential patient pathways through the system. This was used to construct a stock-flow model, populated with current activity data, in order to simulate patient flows and to identify system bottle-necks. Without intervention, assuming current trends continue, Nottingham hospitals are unlikely to reach elective admission targets or achieve the government target of 82% bed occupancy. Admissions from general practice had the greatest influence on occupancy rates. Preventing a small number of emergency admissions in elderly patients showed a substantial effect, reducing bed occupancy by 1% per annum over 5 years. Modelling indicated a range of undesirable outcomes associated with continued growth in demand for emergency care, but also considerable potential to intervene to alleviate these problems, in particular by increasing the care options available in the community

    Quantum conductance problems and the Jacobi ensemble

    Full text link
    In one dimensional transport problems the scattering matrix SS is decomposed into a block structure corresponding to reflection and transmission matrices at the two ends. For SS a random unitary matrix, the singular value probability distribution function of these blocks is calculated. The same is done when SS is constrained to be symmetric, or to be self dual quaternion real, or when SS has real elements, or has real quaternion elements. Three methods are used: metric forms; a variant of the Ingham-Seigel matrix integral; and a theorem specifying the Jacobi random matrix ensemble in terms of Wishart distributed matrices.Comment: 10 page

    Redescription of \u3ci\u3eAnovia circumclusa\u3c/i\u3e (Gorham) (Coleoptera: Coccinellidae: Noviini), with First Description of the Egg, Larva, and Pupa, and Notes on Adult Intraspecific Elytral Pattern Variation

    Get PDF
    Anovia circumclusa (Gorham), a neotropical lady beetle, recently was recorded in North America for the first time. Previously, only the adult form of this beneficial predator had been described. This paper provides a redescription of the adult and the first descriptions of the egg, larva, and pupa. Diagnostic characters for the genus and species are given, and intraspecific color variation in Anovia adults is discussed

    The atypical chemokine receptor-2 does not alter corneal graft survival but regulates early stage of corneal graft induced lymphangiogenesis

    Get PDF
    Open Access via Springer Compact Agreement Funding: Saving Sight in Grampian provided financial support in the forming of Saving Sight in Grampian funding. The sponsor had no role in the design or conduct of this research.Peer reviewedPublisher PD
    • 

    corecore