110 research outputs found
Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2
We investigate polarization memory effects in single-crystal CuFeO2, which
has a magnetically-induced ferroelectric phase at low temperatures and applied
B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric
phase, we find that the nonpolar collinear antiferromagnetic ground state at B
= 0 T retains a strong memory of the polarization magnitude and direction, such
that upon re-entering the ferroelectric phase a net polarization of comparable
magnitude to the initial polarization is recovered in the absence of external
bias. This memory effect is very robust: in pulsed-magnetic-field measurements,
several pulses into the ferroelectric phase with reverse bias are required to
switch the polarization direction, with significant switching only seen after
the system is driven out of the ferroelectric phase and ground state either
magnetically (by application of B > 13 T) or thermally. The memory effect is
also largely insensitive to the magnetoelastic domain composition, since no
change in the memory effect is observed for a sample driven into a
single-domain state by application of stress in the [1-10] direction. On the
basis of Monte Carlo simulations of the ground state spin configurations, we
propose that the memory effect is due to the existence of helical domain walls
within the nonpolar collinear antiferromagnetic ground state, which would
retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure
Serine-like proteolytic enzymes correlated with differential pathogenicity in patients with acute Acanthamoeba keratitis
P>Acute ocular infection due to free-living amoebae of the genus Acanthamoeba is characterized by severe pain, loss of corneal transparency and, eventually, blindness. Proteolytic enzymes secreted by trophozoites of virulent Acanthamoeba strains have an essential role in the mechanisms of pathogenesis, including adhesion, invasion and destruction of the corneal stroma. in this study, we analysed the relationship between the extracellular proteases secreted by clinical isolates of Acanthamoeba and the clinical manifestations and severity of disease that they caused. Clinical isolates were obtained from patients who showed typical symptoms of Acanthamoeba keratitis. Trophozoites were cultivated axenically, and extracellular proteins were collected from cell culture supernatants. Secreted enzymes were partially characterized by gelatin and collagen zymography. Acanthamoeba trophozoites secreted proteases with different molecular masses, proteolysis rates and substrate specificities, mostly serine-like proteases. Different enzymatic patterns of collagenases were observed, varying between single and multiple collagenolytic activities. Low molecular weight serine proteases were secreted by trophozoites associated with worse clinical manifestations. Consequently, proteolytic enzymes of some Acanthamoeba trophozoites could be related to the degree of their virulence and clinical manifestations of disease in the human cornea.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Federal University of São Paulo (FADA-UNIFESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo, Dept Ophthalmol, Paulista Sch Med, Cornea & External Dis Serv, BR-04023062 São Paulo, BrazilUniv São Paulo, Biochem & Biophys Lab, Butantan Inst, São Paulo, BrazilUniv São Paulo, Inst Biomed Sci, Dept Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, Paulista Sch Med, Cornea & External Dis Serv, BR-04023062 São Paulo, BrazilFAPESP: 08/53969-0FAPESP: 05/59739-9Web of Scienc
Controlling magnetic order and quantum disorder in molecule-based magnets.
We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H 2 O)(gly) 2 ](ClO 4 ) 2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO 4 ) , which is formed from dimers of antiferromagnetically interacting Cu 2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons
Controlling magnetic order and quantum disorder in molecule-based magnets
We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H2O)(gly)2](ClO4)2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO4), which is formed from dimers of antiferromagnetically interacting Cu2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons
CPAf Updates Vol. 17 Issue No. 3
In this issue: CPAf women partners and their contribution to the community, 1 A teacher in Pamplona, Camarines Sur integrating CFS in her school, 1 CFS women graduates and trainers in Camarines Sur, 2 Instructional manager educating the young Mangyans in Mindoro, 2 Learning facilitators bringing education to children of Lanao del Sur and Maguindanao, 3 A Peace Weaver in Basilan, 4https://www.ukdr.uplb.edu.ph/cpaf-updates/1032/thumbnail.jp
Anisotropic Local Modification of Crystal Field Levels in Pr-Based Pyrochlores: A Muon-Induced Effect Modeled Using Density Functional Theory
CPAf Updates Vol. 17 Issue No. 4-5
In this issue: CPAf\u27s newly appointed UP Scientists, 1 Book on environment and food security launched, 2 CSPPS conducts seminar on Solid Waste Management Implementation in the Philippines, 2 CPAf orientation on Turnitin and UPLB e-Subscriptions, 3 SPPS 299 class organizes seminar on ATI’s e-learning program on agriculture, 4 CED 299 class holds seminar on shadow education, 4 KMO coordinates photography workshop, 5 CPAf faculty participates in the UP Knowledge Festival, 6 CISCholds 2016 Planning Workshop, 6 CSPPS conducts Mid-year Planning Workshop for 2016, 7 CSPPS studies the effects of the Closed Fishing Season Policy for Sardines in Zamboanga Peninsula, 8https://www.ukdr.uplb.edu.ph/cpaf-updates/1031/thumbnail.jp
Controlling Magnetic Order and Quantum Disorder in Molecule-Based Magnets
We investigate the structural and magnetic properties of two molecule-based magnets synthesized from the same starting components. Their different structural motifs promote contrasting exchange pathways and consequently lead to markedly different magnetic ground states. Through examination of their structural and magnetic properties we show that [Cu(pyz)(H 2 O)(gly) 2 ](ClO 4 ) 2 may be considered a quasi-one-dimensional quantum Heisenberg antiferromagnet whereas the related compound [Cu(pyz)(gly)](ClO 4 ) , which is formed from dimers of antiferromagnetically interacting Cu 2+ spins, remains disordered down to at least 0.03 K in zero field but shows a field-temperature phase diagram reminiscent of that seen in materials showing a Bose-Einstein condensation of magnons
Heteromeric clusters of ubiquitinated ER-shaping proteins drive ER-phagy
Membrane-shaping proteins characterized by reticulon homology domains play an important part in the dynamic remodelling of the endoplasmic reticulum (ER). An example of such a protein is FAM134B, which can bind LC3 proteins and mediate the degradation of ER sheets through selective autophagy (ER-phagy)1. Mutations in FAM134B result in a neurodegenerative disorder in humans that mainly affects sensory and autonomic neurons2. Here we report that ARL6IP1, another ER-shaping protein that contains a reticulon homology domain and is associated with sensory loss3, interacts with FAM134B and participates in the formation of heteromeric multi-protein clusters required for ER-phagy. Moreover, ubiquitination of ARL6IP1 promotes this process. Accordingly, disruption of Arl6ip1 in mice causes an expansion of ER sheets in sensory neurons that degenerate over time. Primary cells obtained from Arl6ip1-deficient mice or from patients display incomplete budding of ER membranes and severe impairment of ER-phagy flux. Therefore, we propose that the clustering of ubiquitinated ER-shaping proteins facilitates the dynamic remodelling of the ER during ER-phagy and is important for neuronal maintenance
- …
