62 research outputs found

    Particles at oil–air surfaces : powdered oil, liquid oil marbles, and oil foam

    Get PDF
    The type of material stabilized by four kinds of fluorinated particles (sericite and bentonite platelet clays and spherical zinc oxide) in air–oil mixtures has been investigated. It depends on the particle wettability and the degree of shear. Upon vigorous agitation, oil dispersions are formed in all the oils containing relatively large bentonite particles and in oils of relatively low surface tension (γla < 26 mN m⁻¹) like dodecane, 20 cS silicone, and cyclomethicone containing the other fluorinated particles. Particle-stabilized oil foams were obtained in oils having γla > 26 mN m⁻¹ where the advancing air–oil–solid contact angle θ lies between ca. 90° and 120°. Gentle shaking, however, gives oil-in-air liquid marbles with all the oil–particle systems except for cases where θ is <60°. For oils of tension >24 mN m⁻¹ with omniphobic zinc oxide and sericite particles for which advancing θ ≥ 90°, dry oil powders consisting of oil drops in air which do not leak oil could be made upon gentle agitation up to a critical oil:particle ratio (COPR). Above the COPR, catastrophic phase inversion of the dry oil powders to air-in-oil foams was observed. When sheared on a substrate, the dry oil powders containing at least 60 wt % of oil release the encapsulated oil, making these materials attractive formulations in the cosmetic and food industries

    Diagnosing Mitochondrial Disorders Remains Challenging in the Omics Era

    Get PDF
    Objective: We hypothesized that novel investigative pathways are needed to decrease diagnostic odysseys in pediatric mitochondrial disease and sought to determine the utility of clinical exome sequencing in a large cohort with suspected mitochondrial disease and to explore whether any of the traditional indicators of mitochondrial disease predict a confirmed genetic diagnosis. Methods: We investigated a cohort of 85 pediatric patients using clinical exome sequencing and compared the results with the outcome of traditional diagnostic tests, including biochemical testing of routine parameters (lactate, alanine, and proline), neuroimaging, and muscle biopsy with histology and respiratory chain enzyme activity studies. Results: We established a genetic diagnosis in 36.5% of the cohort and report 20 novel disease-causing variants (1 mitochondrial DNA). Counterintuitively, routine biochemical markers were more predictive of mitochondrial disease than more invasive and elaborate muscle studies. Conclusions: We propose using biochemical markers to support the clinical suspicion of mitochondrial disease and then apply first-line clinical exome sequencing to identify a definite diagnosis. Muscle biopsy studies should only be used in clinically urgent situations or to confirm an inconclusive genetic result. Classification of Evidence: This is a Class II diagnostic accuracy study showing that the combination of CSF and plasma biochemical tests plus neuroimaging could predict the presence or absence of exome sequencing confirmed mitochondrial disorders

    Insights into energy balance dysregulation from a mouse model of methylmalonic aciduria

    Full text link
    Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria (MMAuria), present unique challenges to energetic homeostasis by disrupting energy producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut) type MMAuria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared to littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these indicate hypometabolism, energetic inflexibility and increased stores at the expense of active tissue as energy shortage consequences

    Flow cytometry immunophenotyping for diagnostic orientation and classification of pediatric cancer based on the EuroFlow Solid Tumor Orientation Tube (STOT)

    Get PDF
    Early diagnosis of pediatric cancer is key for adequate patient management and improved outcome. Although multiparameter flow cytometry (MFC) has proven of great utility in the diagnosis and classification of hematologic malignancies, its application to non-hematopoietic pediatric tumors remains limited. Here we designed and prospectively validated a new single eight-color antibody combination-solid tumor orientation tube, STOT-for diagnostic screening of pediatric cancer by MFC. A total of 476 samples (139 tumor mass, 138 bone marrow, 86 lymph node, 58 peripheral blood, and 55 other body fluid samples) from 296 patients with diagnostic suspicion of pediatric cancer were analyzed by MFC vs. conventional diagnostic procedures. STOT was designed after several design-test-evaluate-redesign cycles based on a large panel of monoclonal antibody combinations tested on 301 samples. In its final version, STOT consists of a single 8-color/12-marker antibody combination (CD99-CD8/(nu)myogenin/CD4-EpCAM/CD56/GD2/(sm)CD3-CD19/(cy)CD3-CD271/CD45). Prospective validation of STOT in 149 samples showed concordant results with the patient WHO/ICCC-3 diagnosis in 138/149 cases (92.6%). These included: 63/63 (100%) reactive/disease-free samples, 43/44 (98%) malignant and 4/4 (100%) benign non-hematopoietic tumors together with 28/38 (74%) leukemia/lymphoma cases; the only exception was Hodgkin lymphoma that required additional markers to be stained.& nbsp;In addition, STOT allowed accurate discrimination among the four most common subtypes of malignant CD45(-) CD56(++) non-hematopoietic solid tumors: 13/13 (GD2(++) (nu)myogenin(-) CD271(-/+) (nu)MyoD1(-) CD99(-) EpCAM(-)) neuroblastoma samples, 5/5 (GD2(-) (nu)myogenin(++) CD271(++) (nu)MyoD1(++) CD99(-/+) EpCAM(-)) rhabdomyosarcomas, 2/2 (GD2(-/+) (nu)myogenin(-) CD271(+) (nu)MyoD1(-) CD99(+) EpCAM(-)) Ewing sarcoma family of tumors, and 7/7 (GD2(-) (nu)myogenin(-) CD271(+) (nu)MyoD1(-) CD99(-) EpCAM(+)) Wilms tumors. In summary, here we designed and validated a new standardized antibody combination and MFC assay for diagnostic screening of pediatric solid tumors that might contribute to fast and accurate diagnostic orientation and classification of pediatric cancer in routine clinical practice.Stemcel biology/Regenerative medicine (incl. bloodtransfusion

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes

    Liver neoplasms in methylmalonic aciduria: An emerging complication

    Get PDF
    Methylmalonic aciduria (MMA) is an inherited metabolic disease caused by methylmalonyl-CoA mutase deficiency. Early-onset disease usually presents with a neonatal acute metabolic acidosis, rapidly causing lethargy, coma, and death if untreated. Late-onset patients have a better prognosis but develop common long-term complications, including neurological deterioration, chronic kidney disease, pancreatitis, optic neuropathy, and chronic liver disease. Of note, oncogenesis has been reported anecdotally in organic acidurias. Here, we present three novel and two previously published cases of MMA patients who developed malignant liver neoplasms. All five patients were affected by a severe, early-onset form of isolated MMA (4 mut0 , 1 cblB subtype). Different types of liver neoplasms, that is, hepatoblastoma and hepatocellular carcinoma, were diagnosed at ages ranging from infancy to adulthood. We discuss pathophysiological hypotheses involved in MMA-related oncogenesis such as mitochondrial dysfunction, impairment of tricarboxylic acid cycle, oxidative stress, and effects of oncometabolites. Based on the intriguing occurrence of liver abnormalities, including neoplasms, we recommend close biochemical and imaging monitoring of liver disease in routine follow-up of MMA patients
    corecore