703 research outputs found
Frequency response in short thermocouple wires
Theoretical expressions are derived for the steady state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for a nonuniform wire with unequal material properties and wire diameters across the junction. The amplitude ratio at low frequency omega approaches 0 agrees with the results of Scadron and Warshawsky (1952) for a steady state temperature distribution. Moreover, the frequency response for a nonuniform wire in the limit of infinite length l approaches infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties. Theoretical expressions are also derived for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental measurements are made for the steady state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 pct. with the theoretical predictions of Forney and Fralick (1991). This is accomplished by choosing a natural frequency omega sub n for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at low frequencies but decrease the natural frequency of the wire. The phase angle data are also distorted for imperfect junctions
Mutations of penicillin acylase residue B71 extend substrate specificity by decreasing steric constraints for substrate binding
Two mutant forms of penicillin acylase from Escherichia coli strains, selected using directed evolution for the ability to use glutaryl-L-leucine for growth [Forney, Wong and Ferber (1989) Appl. Environ. Microbiol. 55, 2550-2555], are changed within one codon, replacing the B-chain residue Phe(B71) with either Cys or Leu. Increases of up to a factor of ten in k(cat)/K-m values for substrates possessing a phenylacetyl leaving group are consistent with a decrease in K-s. Values of k(cat/)K(m) for glutaryl-L-leucine are increased at least 100-fold. A decrease in k(cat)/K-m for the CySB71 mutant with increased pH is consistent with binding of the uncharged glutaryl group. The mutant proteins are more resistant to urea denaturation monitored by protein fluorescence, to inactivation in the presence of substrate either in the presence of urea or at high pH, and to heat inactivation. The crystal structure of the Leu(B71) mutant protein, solved to 2 X resolution, shows a flip of the side chain of Phe(B256) into the periphery of the catalytic centre, associated with loss of the pi-stacking interactions between Phe(B256) and Phe(B71). Molecular modelling demonstrates that glutaryl-L-leucine may bind with the uncharged glutaryl group in the S-1 subsite of either the wild-type or the Leu(B71) mutant but with greater potential freedom of rotation of the substrate leucine moiety in the complex with the mutant protein. This implies a smaller decrease in the conformational entropy of the substrate on binding to the mutant proteins and consequently greater catalytic activity
Measurement of frequency response in short thermocouple wires
Experimental measurements are made for the steady-state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire (type K) and a two material wire (type T) with unequal material properties across the junction. The data for the amplitude ratio and phase angle are correlated to within 10 percent with the theoretical predictions of Fralick and Forney (1991). This is accomplished by choosing a natural frequency omega(sub n) for the wire data to correlate the first order response at large gas temperature frequencies. It is found that a large bead size, however, will increase the amplitude ratio at low frequencies but decreas the natural frequency of the wire. The phase angle data are also distorted for imperfect junctions
Three-wire Thermocouple: Frequency Response in Constant Flow
Theory and experimental measurements are compared with a novel three-wire thermocouple. Signals from three wires of unequal diameters arc recorded from the thermocouple suspended in constant flow with a periodic temperature fluctuation. It is demonstrated that the reconstructed signal from the three-wire thermocouple requires no compensation for omega less than or equal to 5(sub omega1), where omega, is the natural frequency of the smaller wire. The latter result represents a significant improvement compared to previous work with two-wire thermocouples. A correction factor has also been derived to account for wires of arbitrary diameter
Frequency response of a thermocouple wire: Effects of axial conduction
Theoretical expressions are derived for the steady-state frequency response of a thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a uniform thermocouple wire and a nonuniform wire with unequal material properties and wire diameters across the junction. For the case of a uniform wire, the amplitude ratio and phase angle compare favorably with the series solution of Scadron and Warshawsky (1952) except near the ends of the wire. For the case of a non-uniform wire, the amplitude ratio at low frequency omega yields 0 agrees with the results of Scadron and Warshawsky for a steady-state temperature distribution. Moreover, the frequency response for a non-uniform wire in the limit of infinite length l yields infinity is shown to reduce to a simple expression that is analogous to the classic first order solution for a thermocouple wire with uniform properties
Multiwire Thermocouples in Reversing Flow
Measurements are recorded for multiwire thermocouples consisting of either two or three wires of unequal diameters. Signals from the multiwire probe are recorded for a reversing gas flow with both a periodic temperature and time constant fluctuation. It is demonstrated that the reconstructed signal from the multiwire thermocouple requires no compensation provided omega/omega(sub 1) less than 2.3 for two wires or omega/omega(sub 1) less than 3.6 for three wires where omega(sub 1) (= 2(pi)f) is the natural frequency of the smaller wire based on the maximum gas velocity. The latter results were possible provided Fourier transformed data from the wires were used and knowledge of the gas velocity phase angle was available
Frequency response of a supported thermocouple wire: Effects of axial conduction
Theoretical expressions are derived for the steady-state frequency response of a supported thermocouple wire. In particular, the effects of axial heat conduction are demonstrated for both a supported one material wire and a two material wire with unequal material properties across the junction. For the case of a one material supported wire, an exact solution is derived which compares favorably with an approximate expression that only matches temperatures at the support junction. Moreover, for the case of a two material supported wire, an analytical expression is derived that closely correlates numerical results. Experimental data were taken with a type K supported thermocouple. The test thermocouple was constructed with dimensions to demonstrate the effects of axial heat conduction assuming constant physical properties across the junction
Good Quantum Convolutional Error Correction Codes And Their Decoding Algorithm Exist
Quantum convolutional code was introduced recently as an alternative way to
protect vital quantum information. To complete the analysis of quantum
convolutional code, I report a way to decode certain quantum convolutional
codes based on the classical Viterbi decoding algorithm. This decoding
algorithm is optimal for a memoryless channel. I also report three simple
criteria to test if decoding errors in a quantum convolutional code will
terminate after a finite number of decoding steps whenever the Hilbert space
dimension of each quantum register is a prime power. Finally, I show that
certain quantum convolutional codes are in fact stabilizer codes. And hence,
these quantum stabilizer convolutional codes have fault-tolerant
implementations.Comment: Minor changes, to appear in PR
The effects of postexercise consumption of a kefir beverage on performance and recovery during intensive endurance training
This study was designed to determine whether kefir accentuates the positive health benefits assessed by measures in fitness, body composition, or both, as a measure of cardiovascular disease risk as well as the biomarker C-reactive protein (CRP). Sixty-seven adult males and females aged 18 to 24 yr were assigned to 1 of 4 groups: (1) endurance training + control beverage, (2) endurance training +kefir beverage,(3) active control + control beverage, or (4) active control + kefir beverage. The exercise groups completed 15. wk of structured endurancetraining while the active control groups maintained their usual exercise routine. Additionally, each group was assigned to either a kefir or a calorie/macronutrient matched placebo beverage that was consumed twice per week. No significant interactions were found among groups with respect to outcome variables with the exception of serum CRP. The endurance training was effective in improving 1.5-mile (2.41. km) times and kefir supplementation may have been a factor in attenuating the increase in CRP that was observed over the course of the intervention period. This preliminary study suggests that kefir may be involved in improving the risk profile for cardiovascular disease as defined by CRP
- …