1,473 research outputs found

    AFLOW-QHA3P: Robust and automated method to compute thermodynamic properties of solids

    Get PDF
    Accelerating the calculations of finite-temperature thermodynamic properties is a major challenge for rational materials design. Reliable methods can be quite expensive, limiting their applicability in autonomous high-throughput workflows. Here, the three-phonon quasiharmonic approximation (QHA) method is introduced, requiring only three phonon calculations to obtain a thorough characterization of the material. Leveraging a Taylor expansion of the phonon frequencies around the equilibrium volume, the method efficiently resolves the volumetric thermal expansion coefficient, specific heat at constant pressure, the enthalpy, and bulk modulus. Results from the standard QHA and experiments corroborate the procedure, and additional comparisons are made with the recently developed self-consistent QHA. The three approaches—three-phonon, standard, and self-consistent QHAs—are all included within the open-source ab initio framework aflow, allowing the automated determination of properties with various implementations within the same framework

    MicroRNAs as Modulators of Tumor Metabolism, Microenvironment, and Immune Response in Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality. Molecular heterogeneity and absence of biomarkers helping patient allocation to the best therapeutic option contribute to poor prognosis in advanced stages. MicroRNAs' (miRNAs) deregulated expression contributes to tumor development and progression and influences drug resistance in HCC. Accordingly, miRNAs have been extensively investigated as both biomarkers and therapeutic targets. The diagnostic and prognostic roles of circulating miRNAs have been ascertained, though with some inconsistencies across studies. From a therapeutic perspective, miRNA-based approaches demonstrated safety profiles and antitumor efficacy in HCC animal models. Nevertheless, caution should be used when transferring preclinical findings to the clinic, due to possible molecular inconsistency between animal models and the heterogeneous patterns of human diseases. Awealth of information is offered by preclinical studies exploring the mechanisms driving miRNAs' aberrant expression, the molecular cascades triggered by miRNAs and the corresponding phenotypic changes. Ex-vivo analyses confirmed these results, further shedding light on the intricacy of the human disease often overcoming pre-clinical models. This complexity seems to be ascribed to the intrinsic heterogeneity of HCC, to different risk factors driving its development, as well as to changes across stages and previous treatments. Preliminary findings suggest that miRNAs associated with specific risk factors might be more informative in defined patients' subgroups. The first issue to be considered when trying to envisage a possible translational perspective is the molecular context that often drives different miRNA functions, as clearly evidenced by "dual" miRNAs. Concerning the possible roles of miRNAs as biomarkers and therapeutic targets, we will focus on miRNAs' involvement in metabolic pathways and in the modulation of tumor microenvironment, to support their exploitation in defined contexts

    Distance as a barrier to cancer diagnosis and treatment: Review of the literature

    Get PDF
    The burden of travel from a patient’s residence to health care providers is an important issue that can influence access to diagnosis and treatment ofcancer.Although several studies have shown that the travel burden can result in delays in diagnosis and treatment of many common cancers, its role appears underestimated in the treatment of patients in clinical practice. Therefore, we performed a review of the published data on the role of travel burden influencing four items: delay of diagnosis, adequate treatment of cancer, outcome, and quality of life of cancer patients. Forty-seven studies published up to December 2014 were initially identified. Twenty studies were excluded because they did not regard specifically the four items of our review.Twenty-seven studies formed the basis of our study and involved 716,153 patients. The associations between travel burden and (a) cancer stage at diagnosis (12 studies), (b) appropriate treatment (8 studies), (c) outcome (4 studies), and (d) quality of life (1 study) are reported. In addition, in two studies,therelationbetween travel burden and compliance with treatment was examined. The results of our review show that increasing travel requirements are associated with more advanced disease at diagnosis, inappropriatetreatment, aworse prognosis, and a worse quality of life. These results suggest that clinical oncologists should remember the specific travel burden problem for cancer patients, who often need health care services every week or every month for many years

    The Potential of Mixtures of Pure Fluids in ORC-based Power Units fed by Exhaust Gases in Internal Combustion Engines

    Get PDF
    Abstract ORC represents an effective challenge in the waste heat recovery from ICEs. In spite of technological aspects, its thermodynamic design still deserves attention. Mixtures of pure fluids show interesting properties able to improve exergetic efficiency of the Rankine cycle, thanks to the positive slope of the phase changing. They can reduce also ODP and GWP, helping the replacement trends of working fluids. The paper optimizes cycle exergetic efficiency considering mixtures of pure fluids. The use of hydrocarbons in mixtures is particularly suitable and when used in limited fractions with other organic fluids they loses the limits related to the flammability.R245fa is a fluid that obtains a large net power increase when used in mixtures with hydrocarbons, compared to pure fluid an optimized R245fa/benzene mixture, for instance, attains an 11% net power increase

    Angular momentum effects in weak gravitational fields

    Get PDF
    It is shown that, contrary to what is normally expected, it is possible to have angular momentum effects on the geometry of space time at the laboratory scale, much bigger than the purely Newtonian effects. This is due to the fact that the ratio between the angular momentum of a body and its mass, expressed as a length, is easily greater than the mass itself, again expressed as a length.Comment: LATEX, 8 page
    • …
    corecore