1,461 research outputs found

    Nitrogen-Enriched Graphene Metal and Metal Oxide Nanoparticles as Innovative Catalysts: New Uses

    Get PDF
    A new class of catalysts has recently brought the attention of researchers, which is generated by pyrolyzing first transition row metal complexes with nitrogen ligands adsorbed on an inert support, such as carbon, silica. The catalysts have a metal/metal oxide core, surrounded by a few nitrogen-enriched graphene layers (NGr). These materials, which only contain cheap and abundant metals such as iron and cobalt, catalyze reactions for which noble metals are usually required; thus representing a cheaper and more sustainable alternative of the costly noble metals. Until now, such catalysts have been employed mainly in the context of hydrogenation reactions. The objective of this work is to expand the field of applicability of this new class of catalysts. We have used Fe2O3/NGr@C to catalyze olefin cyclopropanation, a reaction for which the use of these catalysts has not previously been investigated. The activity of Fe2O3/NGr@C has been studied by using ethyl diazoacetate and \u3b1-methylstyrene as substrates. Various parameters such as solvents, temperature and time were changed. Fe2O3/NGr@C-catalysts showed best activity in dimethoxyethane at 60 oC, affording high yields of the desired cyclopropanes (mixture of cis and trans isomers) and only 1-2 % of ethyl maleate and fumarate

    REDUCTIVE TRANSFORMATIONS OF THE NITRO GROUP: FROM HOMOGENEOUS TO HETEROGENEOUS CATALYSIS

    Get PDF
    This thesis focuses its attention into two different aspects of catalysis. In the first part, transition-metal complexes were used as homogeneous catalysts for the preparation nitrogen-containing heterocycles (especially indoles) using liquid sources of carbon monoxide. In the second part, in collaboration with Prof. Matthias Beller (Leibniz Institute for Catalysis-LIKAT, Rostock), doped-carbon heterogeneous non-noble metal catalysts were employed as catalytic materials in the hydrogenation of nitroaromatics. In both cases, nitro compounds were used as valuable starting materials corroborating their central role in organic chemistry. Equally, mechanistic aspects (especially kinetics) were taken into account showing how they can play a pivotal role in understanding not only the specific reaction mechanism but also how a catalytic system can be further improved

    Reduction of nitro compounds using 3d-non-noble metal catalysts

    Get PDF
    The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni, and Cu has led to their tremendous achievements over the last years prompting their greater application as "standard" catalysts. In this review, we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages

    Synthesis of 3,6-Dihydro-2H-[1, 2]-Oxazines from Nitroarenes and Conjugated Dienes, Catalyzed by Palladium/Phenanthroline Complexes and Employing Phenyl Formate as a CO Surrogate

    Get PDF
    Palladium/phenanthroline catalyzed reduction of nitroarenes by in situ-generated carbon monoxide, from the decomposition of phenyl formate, affords the corresponding nitrosoarenes. The latter are trapped by conjugated dienes to give the corresponding 3,6-dihydro-2H-[1, 2]-oxazines (hetero Diels-Alder adducts). Many functional groups are well tolerated. Yields are higher than those obtainable by any previously reported method, including the direct reaction of the diene with the pure nitrosoarene. The reaction can be performed in a single standard glass pressure tube, without the need for autoclaves or high-pressure CO lines

    Intraspecific competition hinders drought recovery in a resident but not in its range-expanding congener plant independent of mycorrhizal symbiosis

    Get PDF
    Background and aims Understanding biotic interactions within plant populations and with their symbiotic partners is crucial for elucidating plant responses to drought. While many studies have highlighted the importance of intraspecific plant or mutualistic fungal interactions in predicting drought responses, we know little about the combined effects of these two interactions on the recovery of plants after drought. Methods We conducted an experiment to study the recovery after an extreme drought event of a native European plant species (Centaurea jacea) and its range-expanding congener (Centaurea stoebe), across a gradient of plant density and in association with an AM fungal species (Rhizophagus irregularis). Results Our results showed strong intraspecific competition in C. jacea, which constrained their postdrought recovery. We further found that AM fungi constrained root biomass recovery of C. jacea after drought under high intraspecific competition. The post-drought recovery in C. stoebe was high potentially due to its greater plasticity in the root diameter under drought conditions. Conclusion Strong intraspecific competition can constrain recovery in plants like C. jacea with lesser root trait plasticity after drought, independent of mycorrhizal symbiosis

    Nitrogen-Enriched Graphene Iron Oxide Nanoparticles as Innovative Catalysts: First Application to Cyclopropanation Reactions

    Get PDF
    A new class of catalysts having a metal/metal oxide core surrounded by a few nitrogen-enriched graphene layers (NGR) has recently brought immense attention in research. Until now, NGR catalysts have mostly been employed for hydrogenation reactions. In this work, we expand the field of applicability of NGR catalysts to cyclopropanation reactions. The activity of Fe2O3/NGr@C has been studied by using ethyl diazoacetate and \u3b1-methylstyrene as substrates. Various parameters such as solvents, temperature and time were changed. Fe2O3/NGr@C-catalysts showed best activity in dimethoxyethane at 60 oC, affording high yields of the desired cyclopropanes (mixture of cis and trans isomers) and only 1-2 % of ethyl maleate and fumarate (Figure 1). The catalyst gradually deactivates after each recycle, but we were able to reactivate the recovered catalyst by treating it with dilute H2O2 (1:10 with distilled water). Like \u3b1-methylstyrene, several olefins such as 4-chloro-\u3b1-methyl styrene, 4-methylstyrene, 2- methylstyrene, 3-methylstyrene, 4-chlorostyrene, 4-t-butylstyrene, 1-octene etc. have been tested in order to explore the substrate scope. The corresponding cyclopropanes were obtained in high to excellent isolated yields (84-98%). In all cases trans diastereoselectivity was found, but even the minor cis isomer could be isolated in a pure form

    Circuit training during physical education classes to prepare cadets for military academies tests: Analysis of an educational project

    Get PDF
    Background: The aim of this study was to test the efficacy of an eight-week physical education program based on circuit training to better improve the overall physical and military-specific performance compared to a conventional physical education program in military high school students. Methods: Sixty-four students were enrolled in this study and randomly assigned to an experimental (EG, circuit training) or a control group (CG, traditional physical education program). Immediately before and after the eight-week training period, participants were tested on strength and endurance performance, circuit training tests, and military tests. Moreover, the acquisition of the educational objectives and the pleasantness of the experimental intervention were tested using a qualitative approach. Results: Despite the higher workload in EG than CG during the training period, the effect of the experimental intervention compared to the control was only possibly to likely positive for a few strength and endurance performances and circuit training tests, respectively. A trivial effect was shown in the military tests. On the contrary, the high percentage of motivation (76%), understanding (78%) and collaboration (86%) showed by the students suggests the achievement of acquisition of the educational objectives and a fair pleasantness of the lessons. Conclusions: A lack of clear and marked effect of the experimental intervention could be ascribed to an insufficient exposure time to the training and a high subjective overall workload encountered in military high school students

    How will climate change affect the feeding biology of Collembola?

    Get PDF
    Collembolans are one of the most diverse and abundant group of soil invertebrates. Recent studies have shown anthropogenic climate warming to alter Collembola diversity and density in warm-dry (more detrimental effects) and warm-wet (lesser detrimental effects) conditions. Besides the direct influence of abiotic stressors, shifts in food availability could help understand variable collembolan responses to climate warming. Collembolan diet is generally formed by two main groups of soil fungi: saprotrophic and mycorrhizal fungi, which occupy different spatial niches in the soil, and are simultaneously affected by climate warming and drought. These fungal responses to climate change alter food availability for Collembola, inducing shifts in their dietary composition. Collembolans preferentially consume saprotrophic fungi, regardless of their spatial niche. However, those inhabiting deeper soil layers occasionally feed on mycorrhizal fungi and rely more frequently on such diets when other food sources become scarce. We suggest that climate change-driven scarcity of saprotrophic fungal diets in soils would make collembolans depend more on mycorrhizal fungal diets. We then discuss how such dietary shifts are driven by distinct mechanisms in warm-dry and warm-wet soil conditions. We finally call for the use of emerging techniques (e.g., stable isotope analysis, molecular gut content) to quantify the diets of Collembola more accurately under different climate change scenarios, which will help us shed more insights on how warming and precipitation variability are going to alter Collembola-fungal trophic interactions in a changing world
    • …
    corecore