5,076 research outputs found

    Gas flows in elliptical galaxies

    Get PDF
    In preparation for the next generation of x ray telescopes, researchers have begun a program investigating the evolving x ray properties of elliptical galaxies. Their galaxy models consist of a modified King profile for the luminous portion of the galaxy and can include an isothermal dark halo comprising 90 percent of the total mass. The stellar population is assumed to form at a rate which decreases exponentially on a dynamical time scale with a Salpeter initial mass function. Stellar mass loss occurs instantaneously as stars evolve off the main sequence. All stars more massive than 8 solar mass produce type II supernovae, while less massive stars loss mass through a planetary nebulae. The evolving rate of type I supernovae is normalized to a fraction, gamma sub sn I, of Tammann's (1974) value. All of this information is then incorporated into a one-dimensional hydrodynamics code to determine the evolving dynamical state of the interstellar medium

    The rich cluster of galaxies ABCG 85. III. Analyzing the ABCG 85/87/89 complex

    Full text link
    We present a combined X-ray and optical analysis of the ABCG 85/87/89 complex of clusters of galaxies, based on the ROSAT PSPC image, optical photometric catalogues (Slezak et al. 1998), and an optical redshift catalogue (Durret et al. 1998). From this combined data set, we find striking alignments at all scales at PA≃\simeq160\deg. At small scales, the cD galaxy in ABCG 85 and the brightest galaxies in the cluster are aligned along this PA. At a larger scale, X-ray emission defines a comparable PA south-southeast of ABCG 85 towards ABCG 87, with a patchy X-ray structure very different from the regular shape of the optical galaxy distribution in ABCG 87. The galaxy velocities in the ABCG 87 region show the existence of subgroups, which all have an X-ray counterpart, and seem to be falling onto ABCG 85 along a filament almost perpendicular to the plane of the sky. To the west of ABCG 85, ABCG 89 appears as a significant galaxy density enhancement, but is barely detected at X-ray wavelengths. The galaxy velocities reveal that in fact this is not a cluster but two groups with very different velocities superimposed along the line of sight. These two groups appear to be located in intersecting sheets on opposite sides of a large bubble. These data and their interpretation reinforce the cosmological scenario in which matter, including galaxies, groups and gas, falls onto the cluster along a filament.Comment: accepted for publication in Astronomy & Astrophysic

    On the Nature of X-ray Surface Brightness Fluctuations in M87

    Full text link
    X-ray images of galaxy clusters and gas-rich elliptical galaxies show a wealth of small-scale features which reflect fluctuations in density and/or temperature of the intra-cluster medium. In this paper we study these fluctuations in M87/Virgo, to establish whether sound waves/shocks, bubbles or uplifted cold gas dominate the structure. We exploit the strong dependence of the emissivity on density and temperature in different energy bands to distinguish between these processes. Using simulations we demonstrate that our analysis recovers the leading type of fluctuation even in the presence of projection effects and temperature gradients. We confirm the isobaric nature of cool filaments of gas entrained by buoyantly rising bubbles, extending to 7' to the east and south-west, and the adiabatic nature of the weak shocks at 40" and 3' from the center. For features of 5--10 kpc, we show that the central 4'x 4' region is dominated by cool structures in pressure equilibrium with the ambient hotter gas while up to 30 percent of the variance in this region can be ascribed to adiabatic fluctuations. The remaining part of the central 14'x14' region, excluding the arms and shocks described above, is dominated by apparently isothermal fluctuations (bubbles) with a possible admixture (at the level of about 30 percent) of adiabatic (sound waves) and by isobaric structures. Larger features, of about 30 kpc, show a stronger contribution from isobaric fluctuations. The results broadly agree with an AGN feedback model mediated by bubbles of relativistic plasma.Comment: 16 pages, submitted to Ap
    • …
    corecore