20 research outputs found
Behavioral genetics and taste
This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste
Responses of the Hamster Chorda Tympani Nerve to Sucrose+Acid and Sucrose+Citrate Taste Mixtures
Studies of taste receptor cells, chorda tympani (CT) neurons, and brainstem neurons show stimulus interactions in the form of inhibition or enhancement of the effectiveness of sucrose when mixed with acids or citrate salts, respectively. To investigate further the effects of acids and the trivalent citrate anion on sucrose responses in hamsters (Mesocricetus auratus), we recorded multifiber CT responses to 100 mM sucrose; a concentration series of HCl, citric acid, acetic acid, sodium citrate (with and without amiloride added), potassium citrate, and all binary combinations of acids and salts with 100 mM sucrose. Compared with response additivity, sucrose responses were increasingly suppressed in acid + sucrose mixtures with increases in titratable acidity, but HCl and citric acid were more effective suppressors than acetic acid. Citrate salts suppressed sucrose responses and baseline CT neural activity to a similar degree. Citrate salts also elicited prolonged, concentration-dependent, water-rinse responses. The specific loss in sucrose effectiveness as a CT stimulus with increasing titratable acidity was confirmed; however, no increase in sucrose effectiveness was found with the addition of citrate. Further study is needed to define the chemical basis for effects of acids and salts in taste mixtures