120 research outputs found

    New linearization and reweighting for simulations of string sigma-model on the lattice

    Get PDF
    We study the discretized worldsheet of Type IIB strings in the Gubser-Klebanov-Polyakov background in a new setup, which eliminates a complex phase previously detected in the fermionic determinant. A sign ambiguity remains, which a study of the fermionic spectrum shows to be related to Yukawa-like terms, including those present in the original Lagrangian before the linearization standard in a lattice QFT approach. Monte Carlo simulations are performed in a large region of the parameter space, where the sign problem starts becoming severe and instabilities appear due to the zero eigenvalues of the fermionic operator. To face these problems, simulations are conducted using the absolute value of a fermionic Pfaffian obtained introducing a small twisted-mass term, acting as an infrared regulator, into the action. The sign of the Pfaffian and the low modes of the quadratic fermionic operator are then taken into account by a reweighting procedure of which we discuss the impact on the measurement of the observables. In this setup we study bosonic and fermionic correlators and observe a divergence in the latter, which we argue - also via a one-loop analysis in lattice perturbation theory - to originate from the U(1)-breaking of our Wilson-like discretization for the fermionic sector

    Strings on the lattice and AdS/CFT

    Get PDF
    We present a new auxiliary field representation for the four-fermi term of the gauge-fixed Green-Schwarz superstring action which describes fluctuations around the null-cusp background in AdS5×S5AdS_5\times S^5. We sketch the main features of the fermionic operator spectrum, identifying the region of parameter space where the sign ambiguity is absent. Measurements for the observables in the setup here described are presented and discussed in a forthcoming publication

    Two-loop cusp anomaly in ABJM at strong coupling

    Get PDF
    We compute the null cusp anomalous dimension of ABJM theory at strong coupling up to two-loop order. This is done by evaluating corrections to the corresponding superstring partition function, weighted by the AdS 4 × ℂℙ3 action in AdS light-cone gauge. We compare our result, where we use an anomalous shift in the AdS 4 radius, with the cusp anomaly of N = 4 SYM, and extract the two-loop contribution to the non-trivial integrable coupling h(λ) of ABJM theory. It coincides with the strong coupling expansion of the exact expression for h(λ) recently conjectured by Gromov and Sizov. Our work provides thus a non-trivial perturbative check for the latter, as well as evidence for two-loop UV-finiteness and quantum integrability of the Type IIA AdS 4 × ℂℙ3 superstring in this gauge

    Green-Schwarz superstring on the lattice

    Get PDF
    We consider possible discretizations for a gauge-fixed Green-Schwarz action of Type IIB superstring. We use them for measuring the action, from which we extract the cusp anomalous dimension of planar N=4 SYM as derived from AdS/CFT, as well as the mass of the two AdS excitations transverse to the relevant null cusp classical string solution. We perform lattice simulations employing a Rational Hybrid Monte Carlo (RHMC) algorithm and two Wilson-like fermion discretizations, one of which preserves the global SO(6) symmetry the model. We compare our results with the expected behavior at various values of g=λ√4π . For both the observables, we find a good agreement for large g, which is the perturbative regime of the sigma-model. For smaller values of g, the expectation value of the action exhibits a deviation compatible with the presence of quadratic divergences. After their non-perturbative subtraction the continuum limit can be taken, and suggests a qualitative agreement with the non-perturbative expectation from AdS/CFT. Furthermore, we detect a phase in the fermion determinant, whose origin we explain, that for small g leads to a sign problem not treatable via standard reweigthing. The continuum extrapolations of the observables in the two different discretizations agree within errors, which is strongly suggesting that they lead to the same continuum limit. Part of the results discussed here were presented earlier in [1]

    Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS(5) x S-5

    Get PDF
    We revisit the computation of the 1-loop string correction to the “latitude” minimal surface in AdS 5 × S 5 representing 1/4 BPS Wilson loop in planar N=4 SYM theory previously addressed in arXiv:1512.00841 and arXiv:1601.04708. We resolve the problem of matching with the subleading term in the strong coupling expansion of the exact gauge theory result (derived previously from localization) using a different method to compute determinants of 2d string fluctuation operators. We apply perturbation theory in a small parameter (angle of the latitude) corresponding to an expansion near the AdS 2 minimal surface representing 1/2 BPS circular Wilson loop. This allows us to compute the corrections to the heat kernels and zeta-functions of the operators in terms of the known heat kernels on AdS 2. We apply the same method also to two other examples of Wilson loop surfaces: generalized cusp and k-wound circle

    A solution to the 4-tachyon off-shell amplitude in cubic string field theory

    Get PDF
    We derive an analytic series solution of the elliptic equations providing the 4-tachyon off-shell amplitude in cubic string field theory (CSFT). From such a solution we compute the exact coefficient of the quartic effective action relevant for time dependent solutions and we derive the exact coefficient of the quartic tachyon coupling. The rolling tachyon solution expressed as a series of exponentials ete^t is studied both using level-truncation computations and the exact 4-tachyon amplitude. The results for the level truncated coefficients are shown to converge to those derived using the exact string amplitude. The agreement with previous work on the subject, both on the quartic tachyon coupling and on the CSFT rolling tachyon, is an excellent test for the accuracy of our off-shell solution.Comment: 26 pages, 5 figure

    One-loop spectroscopy of semiclassically quantized strings: bosonic sector

    Get PDF
    We make a further step in the analytically exact quantization of spinning string states in semiclassical approximation, by evaluating the exact one-loop partition function for a class of two-spin string solutions for which quadratic fluctuations form a non-trivial system of coupled modes. This is the case of a folded string in the SU(2) sector, in the limit described by a quantum Landau–Lifshitz model. The same applies to the full bosonic sector of fluctuations over the folded spinning string in AdS5 with an angular momentum J in S5. Fluctuations are governed by a special class of fourth-order differential operators, with coefficients being meromorphic functions on the torus, which we are able to solve exactly

    The Subleading Term of the Strong Coupling Expansion of the Heavy-Quark Potential in a N=4\mathcal N=4 Super Yang-Mills Plasma

    Full text link
    Applying the AdS/CFT correspondence, the expansion of the heavy-quark potential of the N{\cal N} supersymmetric Yang-Mills theory at large NcN_c is carried out to the sub-leading term in the large 't Hooft coupling at nonzero temperatures. The strong coupling corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The contributions of these determinants are evaluated numerically.Comment: 17 pages in JHEP3, typos fixed, updated version to be published in JHE
    • 

    corecore