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Abstract: We study the discretized worldsheet of Type IIB strings in the Gubser-

Klebanov-Polyakov background in a new setup, which eliminates a complex phase pre-

viously detected in the fermionic determinant. A sign ambiguity remains, which a study of

the fermionic spectrum shows to be related to Yukawa-like terms, including those present

in the original Lagrangian before the linearization standard in a lattice QFT approach.

Monte Carlo simulations are performed in a large region of the parameter space, where the

sign problem starts becoming severe and instabilities appear due to the zero eigenvalues of

the fermionic operator. To face these problems, simulations are conducted using the abso-

lute value of a fermionic Pfaffian obtained introducing a small twisted-mass term, acting

as an infrared regulator, into the action. The sign of the Pfaffian and the low modes of

the quadratic fermionic operator are then taken into account by a reweighting procedure

of which we discuss the impact on the measurement of the observables. In this setup we

study bosonic and fermionic correlators and observe a divergence in the latter, which we

argue — also via a one-loop analysis in lattice perturbation theory — to originate from

the U(1)-breaking of our Wilson-like discretization for the fermionic sector.
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1 Introduction and discussion

Lattice field theory methods are already employed for some time in the broad context of

AdS/CFT (see e.g. [1–9]), and more recently also from the point of view of string sigma-

models in AdS backgrounds [10–14]. In this case the focus has been on a particularly central

model for the AdS/CFT community, the string worldsheet dual to a light-like cusped Wil-

son loop. The renormalization of the latter is governed by the cusp anomalous dimension,

an observable of crucial importance in all gauge theories and also in the maximally super-

symmetric one, N = 4 super Yang-Mills in four dimensions. Its non-perturbative behavior

is there accessible exactly, when using the assumption and the tools of integrability [15–19].

From the perspective of superstring theory, the relevant sigma-model — a Green-Schwarz

action in AdS5 × S5 background with Ramond-Ramond flux — is a complicated, highly

non-linear two-dimensional field theory which is not known how to solve exactly and has

been approached perturbatively, so far up to two-loop level, in a semiclassical way. Ap-

plying lattice field theory methods for its non-perturbative investigation appears to be a

formidable benchmark test for a wider program which aims at using this approach to nu-

merical holography in much more general cases, for which exact predictions do not exist.

This is particularly true since, as from the preliminary results of ref. [12], this model ap-

pears to present in a single setup many of the challenges of lattice investigations in QFT,

such as e.g. symmetry-breaking discretizations, numerical instabilities and even a complex

phase problem. In this paper we make significant steps in addressing these points.

The model under study is the AdS-lightcone gauge-fixed, Type IIB Green-Schwarz

superstring action [20, 21] describing fluctuations about the Gubser-Klebanov-Polyakov

– 1 –



J
H
E
P
0
1
(
2
0
2
0
)
1
7
4

background [22], and was worked out explicitly in [23]. From the point of view of an

investigation with lattice field theory methods, it is a non-linear action with no gauge

degrees of freedom and where fermions, which couple via a quartic interaction, do not carry

(Lorentz) spinor indices but are just a set of anticommuting scalars. A global SO(6)×SO(2)

symmetry is explicitly realized. In continuum perturbation theory, results are available up

to two loop order [23, 24] (see also [25]).

The analysis of refs. [11, 12] presented a discretization of the (linearized) model based

on a Wilson-like treatment of the fermionic sector which was tested via a one-loop analysis

in lattice perturbation theory. An estimation of the (derivative) of the cusp anomaly of

N = 4 super Yang-Mills was provided, via a measurement of the vacuum expectation value

of the relevant action in terms of simulations performed employing a Rational Hybrid

Monte Carlo (RHMC) algorithm. In this context, the (dimensionless) coupling constant is

the effective string tension g = R2

4πα′ ≡
√
λ

4π , where R is the common radius of AdS5 and S5

and λ is the ’t Hooft coupling, and the perturbative expansion is a series in inverse powers

of the effective string tension. Therefore, the string sigma-model is weakly coupled for

large values of g and in this regime, a good qualitative agreement was observed with the

exact predictions obtained via integrability methods. In the case of higher-order fermionic

interactions, one proceeds first linearizing the model via the introduction a set of auxiliary

fields, then integrates out the fermionic determinant/Pfaffian re-exponentiating it in terms

of a set of bosonic fields called pseudio-fermions and letting it become part of the Boltzmann

weight of configurations in the statistical ensemble. It was observed in [12] that the nature

of the quartic interaction — in which a “repulsive” potential appears — is responsible for

the appearance of a non-hermitian piece in the linearized Lagrangian, which eventually

gives rise to a complex phase in the fermionic Pfaffian. For lower values of g, namely when

the string sigma-model is strongly coupled, a severe sign problems appears.

In what follows we discuss a new linearization of the four-fermion term1 which elimi-

nates the complex phase — albeit not the sign problem (this is expected in most systems

with interacting fermions). We will proceed via an algebraic manipulation of the original

fermionic Lagrangian. The resulting quadratic fermionic operator OF is antisymmetric and

“γ5-hermitian”, two properties which ensure a real, non-negative detOF and a real Pfaf-

fian (Pf OF )2 = detOF ≥ 0. This is quite crucial, as eliminating the complex phase allows

to eliminate a systematic error in measurements, in particular in the so-called reweighting

procedure (see section 4 below), in which the possibly present phase would have to be calcu-

lated explicitly.2 Because of the sign ambiguity in Pf OF = ±√detOF , a sign problem may

still remain, which is in fact the case. Below — via a study of the fermionic spectrum [13]

— we show that the sign ambiguity appears to be related to the Yukawa-like terms, in-

cluding those present before linearization, and therefore in the original Lagrangian. By

looking at the lowest eigenvalue for the squared fermionic operator Ô†F ÔF in a large region

1This new linearization has been presented at various conferences and in the proceedings [13].
2An efficient evaluation of complex determinants for arbitrarily large matrices is highly non trivial. For

this reason, in [12] this has been done only for small lattices. It was there observed that the reweighting

had no effect on the central value of the observables under study, therefore the phase was omitted from the

simulations when taking the continuum limit (N →∞). In absence of data for larger lattices the possible

systematic error related to this procedure was not assessed.
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of the parameter space, we also observe below that sign flips are extremely unlikely in an

interesting regime of the coupling, g ' 10.

Together with the sign problem, for lower values of g the zero eigenvalues of the

fermionic operator cause numerical instabilities, due to the non-convergence of the inverter

for the fermionic matrix. Mimicking the twisted-mass reweighting procedure of [26] we

perform simulations using the absolute value of a fermionic Pfaffian modified with an

infrared regulator. The sign of the Pfaffian and the low modes of OF are then taken

into account by a reweighting procedure of which we discuss in details the impact on the

measurement of the observables. We are confident that simulations of the model in this

setup are stable in a very large region of the parameter space g ≥ 2, with in principle no

obvious obstacle for simulations at even smaller value of g. The sign problem becomes

severe for g < 5, which makes measurements unreliable in this region. However, it is very

interesting to observe that the sign-reweighting seems not to have effect on the measured

observables, and it would be important to investigate why this happens further.

Below we investigate two kinds of observables — bosonic and fermionic correlators of

the field excitations about the Gubser-Klebanov-Polyakov background [22] — and observe

a linear divergence in the measurements of the fermionic masses. This is reminiscent of

a typical phenomenon occurring in lattice QCD for quark masses in the case of Wilson

fermions, an additive renormalization which manifests itself as a power (linear) divergence

in the lattice spacing and it is related to the fact that the lattice action for fermions breaks

chiral symmetry (see e.g. [27]). In our case, it is natural to trace back the observed diver-

gence to the fact that our discretization breaks the U(1) part of the original SO(6) ×U(1)

symmetry of our model. We argue this in details below, using numerics and the relation to

the bosonic counterpart of this divergence — the linearly divergent one-point functions of

the two AdS excitations transverse to the relevant null cusp classical string solution. The

latter are calculated at leading order in lattice perturbation theory in appendix B.

An immediate and crucial outlook of the analysis here presented is the necessity of

a redefinition of the continuum limit, which should take into account the infinite mass

renormalization observed and therefore a possible tuning of the “bare” mass parameter of

the theory (the light-cone momentum P+, which we redefine as m below). One way to

proceed is by studying the violation of the continuum Ward identities on the lattice and

explicitly checking that these violations vanish in the continuum limit. It would be also

mostly interesting to investigate discretizations of the fermionic action (e.g. inspired to

Ginsparg-Wilson fermions) which may preserve a larger symmetry group on the lattice.3

This paper proceeds with a presentation of the details on the algebraic manipulation

of the Lagrangian and its novel linearization (section 2), an analysis of the spectrum of

the fermionic operator (section 3), a study of bosonic and fermionic correlators (section 4)

and an analysis of the impact of reweighting procedure on the observables (section 4.2).

appendices collect notation and useful details for deriving the fermionic linearization (ap-

pendix A) as well as the evaluation at leading order in lattice perturbation theory of the

non-trivial one-point function 〈x〉 (appendix B).

3We thank Agostino Patella for discussions on this.
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2 Linearization and phase-free Pfaffian

The Euclidean superstring action in AdS-lightcone gauge-fixing [20, 21] describing quantum

fluctuations around the null-cusp background in AdS5 × S5 reads [23]

Scusp = g

∫
dtds

{∣∣∣∣∂tx+
1

2
x

∣∣∣∣2+
1

z4

∣∣∣∣∂sx− 1

2
x

∣∣∣∣2 +

(
∂tz

M+
1

2
zM +

i

z2
zNηi

(
ρMN

)i
j
ηj
)2

+
1

z4

(
∂sz

M − 1

2
zM
)2

+ i
(
θi∂tθi + ηi∂tηi + θi∂tθ

i + ηi∂tη
i
)
− 1

z2

(
ηiηi

)2
+2i

[
1

z3
zMηi

(
ρM
)
ij

(
∂sθ

j − 1

2
θj − i

z
ηj
(
∂sx−

1

2
x

))
+

1

z3
zMηi(ρ

†
M )ij

(
∂sθj −

1

2
θj +

i

z
ηj

(
∂sx−

1

2
x

)∗)]}
(2.1)

where x, x∗ are two bosonic fields transverse to the subspace AdS3 of the classical solution

and zM (M = 1, · · · , 6), with z =
√
zMzM , are the six cartesian coordinates of the sphere

S5. The Graßmann-odd fields θi, ηi, i = 1, 2, 3, 4 are complex variables (no Lorentz spinor

indices appear) such that θi = (θi)
†, ηi = (ηi)

†, transforming in the fundamental repre-

sentation of the SU(4) R-symmetry group. The matrices ρMij are the off-diagonal blocks

of SO(6) Dirac matrices γM in chiral representation, and (ρMN ) ji = (ρ[Mρ†N ]) ji are the

SO(6) generators. Under the U(1) symmetry, the fields zM are neutral , θi and ηi have

opposite charges and the charge of ηi (ηi) is half the charge of x (x∗). In the action (2.1)

a massive parameter (∼ P+) is missing, which we restore below in (2.12) defining it as m.

As standard, to take into account the fermionic contribution in the case of higher-

order interactions one first linearizes the corresponding Lagrangian, making it quadratic

in fermions, and then formally integrates out the Graßmann-odd fields letting their deter-

minant — here, a Pfaffian — to enter the Boltzmann weight of each configuration through

re-exponentiation∫
DΨ e−

∫
dtdsΨTOFΨ = Pf OF −→ (detOF O

†
F )

1
4 =

∫
DξDξ̄ e−

∫
dtds ξ̄(OFO

†
F )−

1
4 ξ , (2.2)

where the replacement is needed in the case of non-positive-definite Pfaffian.

To linearize, we focus on the part of the Lagrangian in (2.1) which is quartic in fermions

L4 =
1

z2

[
−(η2)2 +

(
i ηi(ρ

MN )ijn
Nηj

)2
]
, (2.3)

where nM = zM

z . Notice the plus sign in front of the second term in (2.3), which squares

an hermitian bilinear (i ηiρ
MNi

jη
j)† = iηj ρ

MNj
i η
i [12]. Then the standard Hubbard-

Stratonovich transformation

exp

{
− g

∫
dtds

[
− 1

z2

(
ηiηi

)2
+

(
i

z2
zNηiρ

MNi
jη
j

)2]}
∼
∫
DφDφM exp

{
− g

∫
dtds

[
1

2
φ2 +

√
2

z
φ η2 +

1

2
(φM )2

−i
√

2

z2
φMzN

(
i ηiρ

MNi
jη
j
)]}

(2.4)
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generates a non-hermitian term, the last one above, resulting in a complex-valued Pfaf-

fian for the fermionic operator. Here we provide a solution to this problem, obtaining

a real-valued Pfaffian via an alternative procedure, where the first step is rewriting the

Lagrangian (2.3) with a procedure inspired by [28]. There, a simpler action with SO(4)

four-fermion terms in three dimensions was considered (see also the four-dimensional SU(4)

counterpart in [29]). Our Lagrangian (2.3) is invariant under SU(4)×U(1) transformations

and this requires a generalization of [28] that preserves this symmetry. Let us start by

eliminating the matrices ρMN from the second term of (2.3) in favour of ρM , which after

some ρ-matrices manipulations leads to

L4 =
1

z2

(
−4 (η2)2 + 2

∣∣∣ηi(ρN )iknNηk

∣∣∣2) . (2.5)

We then define a duality transformation, reminiscent of the standard Hodge duality but

adapted to our particular case. Given Σi
j ≡ ηiηj the dual matrix Σ̃j

i is defined by

Σ̃j
i = nNnL(ρN )ik(ρL)jlΣk

l . (2.6)

Notice that ˜̃Σ = Σ and Σi
j ≡ (Σi

j)† = Σj
i. One can then easily rewrite (2.5) as

L4 =
2

z2
Tr
(

ΣΣ + Σ̃Σ̃− ΣΣ̃
)
, (2.7)

where the trace is over SU(4) fundamental indices. Although we split the first two terms

in (2.7) to exhibit the neutrality of the Lagrangian under duality transformation, it is useful

to keep in mind that TrΣ̃Σ̃ = TrΣΣ. Since we want to write down a Lagrangian as the

sum of two terms squared, it is natural to introduce the self- and antiself-dual part of Σ

Σ± = Σ± Σ̃ (2.8)

such that Σ̃± = ±Σ±. Now the crucial, though elementary fact that TrΣ±Σ± = 2Tr
(
ΣΣ±

ΣΣ̃
)

gives us some freedom in the choice of the sign in the Lagrangian,4 since

L4 =
1

z2
Tr (4ΣΣ∓ Σ±Σ± ± 2ΣΣ) . (2.9)

This last equation proves that the complex phase is an artefact of our naive linearization.

Indeed, (2.9) provides two equivalent forms of the same action, one which would lead to a

phase problem and one which would not. Choosing the latter, i.e. the one involving Σ+,

we obtain for the quartic Lagrangian the expression

L4 =
1

z2

(
−6 (η2)2 − Σ+

j
iΣ+

i
j

)
. (2.10)

4It is worth emphasizing that there is neither ambiguity nor arbitrariness in the double sign present

in (2.7): writing the Lagrangian in terms of the self-dual part of Σ requires the minus sign, writing it in

terms of the antiself-dual part requires the plus sign.

– 5 –



J
H
E
P
0
1
(
2
0
2
0
)
1
7
4

In this form the Lagrangian is suitable for the following Hubbard-Stratonovich

transformation

exp

{
− g

∫
dtds

[
− 1

z2

(
−6 (η2)2 − Σ+

j
iΣ+

i
j

)]}
∼
∫
DφDφM exp

{
− g

∫
dtds

[
12

z
η2φ+ 6φ2 +

2

z
Σ+

i
jφ
j
i + φijφ

j
i

]}
,

(2.11)

where φ is real and φij can be thought of as a 4× 4 complex hermitian matrix with 16 real

degrees of freedom.5 Therefore the new linearization proposed here introduces a total of

17 auxiliary fields.

The final form of the Lagrangian is then

L =

∣∣∣∣∂tx+
m

2
x

∣∣∣∣2 +
1

z4

∣∣∣∣∂sx− m

2
x

∣∣∣∣2 +

(
∂tz

M +
m

2
zM
)2

+
1

z4

(
∂sz

M − m

2
zM
)2

+ 6φ2 + φijφ
j
i + ψTOFψ

(2.12)

with ψ ≡
(
θi, θi, η

i, ηi
)

and

OF =


0 i∂t −iρM

(
∂s + m

2

)
zM

z3 0

i∂t 0 0 −iρ†M
(
∂s + m

2

)
zM

z3

i z
M

z3 ρ
M
(
∂s − m

2

)
0 2 z

M

z4 ρ
M
(
∂sx−mx

2

)
i∂t −AT

0 i z
M

z3 ρ
†
M

(
∂s − m

2

)
i∂t +A −2 z

M

z4 ρ
†
M

(
∂sx
∗ −mx

2
∗)

 ,

(2.13)

where

A = −6

z
φ+

1

z
φ̃+

1

z3
ρ∗N φ̃

TρLzNzL + i
zN

z2
ρMN∂tz

M , φ̃ ≡
(
φ̃ij

)
≡
(
φij
)
. (2.14)

The discretization that we will adopt here was presented in [12]. There, it was ob-

served that it is a priori not possible to remove fermion doublers while maintaining all the

symmetries of the model and preventing complex phases to appear in the determinant. A

“minimal-breaking” solution preserves the SU(4) global symmetry of the Lagrangian and

breaks the U(1),6 and it consists in adding a Wilson-like term in the main diagonal of the

fermionic operator. In lattice perturbation theory, this discretization reproduces in the

continuum limit a → 0 the large g, one-loop value of the cusp anomalous dimension [12].

As the new linearization affects off-diagonal terms (A-terms), we can simply proceed with

the proposal in [12] for the discretized fermionic operator

ÔF =


W+ −p̊01 (p̊1 − im2 )ρM zM

z3 0

−p̊01 −W †+ 0 ρ†M (p̊1 − im2 ) z
M

z3

−(p̊1 + im2 )ρM zM

z3 0 2 z
M

z4 ρ
M
(
∂sx−mx

2

)
+W− −p̊01−AT

0 −ρ†M (p̊1 + i m2 ) z
M

z3 −p̊01 +A −2 z
M

z4 ρ
†
M

(
∂sx
∗ −mx

2
∗)−W †−


(2.15)

5The proof of (2.11) is based on these properties, the split of Σ+
j
i and φij with i 6= j into real and

imaginary parts and the Gaussian integration formula over real variables.
6Another possible discretization, also used in [12], breaks both SO(6) and U(1) symmetries.
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with [27]

p̊µ =
1

a
sin(pµa) , p̂µ ≡

2

a
sin

pµa

2
, (2.16)

A is in our case defined in (2.14), and (|r| = 1)

W± =
r

2 z2

(
p̂2

0 ± i p̂2
1

)
ρMzM . (2.17)

We recall that the U(1) symmetry forbids in the original action the presence of bilinears

made up of fermions with identical U(1) charge (upper diagonal block entries in (2.13)), and

only allows them if some compensating, oppositely charged, field multiplies them (lower

diagonal block entries in (2.13)). The Wilson term W± in (2.17) is U(1)-neutral, and the

breaking of the U(1) symmetry is due to its presence in the diagonal of (2.15).

The values of the discretised (scalar) fields are assigned to each lattice site, with pe-

riodic boundary conditions for all the fields except for antiperiodic temporal boundary

conditions in the case of fermions.

3 Spectrum of the fermionic operator

In simpler cases of models with four-fermion interactions [28, 29] a choice of Yukawa terms

similar in spirit to the one described in the previous section turns out to ensure a positive-

definite Pfaffian. There the relevant operator is real and antisymmetric — so that its

purely imaginary eigenvalues come in pairs (i a,−ia) — and the symmetries of the model

ensure that all eigenvalues are also doubly degenerate. One may then define the Pfaffian

as the product of eigenvalues with positive imaginary part on the initial configuration.

As the simulation progresses, sign flips in the Pfaffian correspond to an odd number of

eigenvalues crossing through the origin, but as all eigenvalues are doubly degenerate such

sign changes cannot occur. For a system with a positive-definite Pfaffian the arrow in (2.2)

is an equivalence, and no sign problem appears.

In our case, the fermionic operator ÔF is antisymmetric, and satisfies the constraint

(reminiscent of the γ5-hermiticity in lattice QCD) [11, 12]

Ô†F = Γ5 ÔF Γ5 , (3.1)

where Γ5 is the following unitary, antihermitian matrix

Γ5 =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , Γ†5Γ5 = 1 Γ†5 = −Γ5 . (3.2)

The antisymmetry and the property (3.1) ensure det ÔF to be real and non-negative.

While the absence of a complex phase allows us to eliminate a systematic error of our

previous analysis, it is not enough to make the Pfaffian positive-definite, implying that

the model may still suffer a sign problem. One can check that — in the case of generally

complex eigenvalues λ — the antisymmetry and the Γ5-hermiticity (3.1) ensure a spectrum
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Figure 1. Spectrum of ÔF , in absence (left diagrams) and presence (right diagrams) of A (Yukawa-

like) terms.

characterized by quartets (λ,−λ∗,−λ, λ∗). One can then define the Pfaffian on the starting

configuration as the product (λλ∗) for each quartet, which would provide sign flips in PfÔF .

However, for purely imaginary or purely real eigenvalues, the disposition in quartets is no

longer enforced by (3.1) and indeed may not happen, leaving a spectrum of pairs (λ,−λ)

with no degeneracy. A numerical study of the spectrum of ÔF appears to indicate that the

disposition in quartets would occur if the A-terms in (2.13) — defining Yukawa-like terms —

were vanishing, see figure 1 left, while for A 6= 0 (on the right) purely imaginary eigenvalues

may appear, with no degeneracy. One should notice that such purely imaginary eigenvalues

appear also when auxiliary fields are set to zero — and thus the only non-vanishing A-term

is the one present in the original Lagrangian, before linearization — suggesting that the

sign ambiguity cannot be tamed by a suitably-enough choice of auxiliary fields.

A sign problem appears already at g = 5 [12], and figure 2 (left panel) shows that the

problem becomes severe for values of the coupling g ∼ 2. It is interesting to look at the

lowest eigenvalue for the squared fermionic operator Ô†F ÔF in a large region of the param-

eter space. If zero eigenvalues of Ô†F ÔF do not occur for certain values of the parameters,

no zero eigenvalues will occur for ÔF as well, and thus no sign flips for its Pfaffian. The
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Figure 2. Left panel: Monte Carlo history for the sign of the Pfaffian of OF in (2.13) at a value g = 2

of the coupling. The strong oscillatory behavior indicates a severe sign problem. Right panel: the

lowest eigenvalue λmin for the squared fermionic operator O†
FOF appears to be well separated from

zero, a statement which then also holds for OF . The variance is defined by σ2
min = 〈λ2min〉−〈λmin〉2.

In the region of parameters explored, no zero eigenvalues for detOF appear, indicating that for the

real Pfaffian PfOF no sign flips should occur.

right panel of figure 2 shows that the smallest eigenvalues of Ô†F ÔF are clearly separated

from zero for values of g & 10. Although not a proof of their absence, this “gap” suggest

that sign flips are extremely unlikely. It would be interesting to understand the reason for

this “gap”. It is also interesting to notice that this region of the parameter space safely

includes g = 10, at which simulations [12] appear to detect a non-perturbative behavior.7

4 Simulations at finite coupling

We will now explore the region of the coupling g < 10, where a sign problem appears.

In addition to the latter, simulations at g . 5 run into numerical instabilities due to the

non-convergence of the inverter for the fermionic matrix. These instabilities can be traced

back to the presence of zero eigenvalues of the fermionic operator, and may be cured by

regularizing the fermionic Pfaffian in a way reminiscent of the twisted-mass reweighting

procedure of [26] (see also [30]). Namely, a massive term is added to the fermionic matrix

to obtain

ÕF = ÔF + i µΓ5 , ÕF Õ
†
F = ÔF Ô

†
F + µ2

1 , (4.1)

so that µ2
1 shifts the eigenvalues of ÔF Ô

†
F apart from zero. To compensate for this, one

uses reweighting (see below) and refers to µ as the reweighting mass parameter.

Therefore, in this region of the parameter space simulations are not done with the

exact string worldsheet action as given by the discretized version of (2.12) and (2.13) (in

configuration space), but differ due to both the replacement (2.2) of the Pfaffian by its

absolute value and the addition of the “twisted mass” in (4.1). The expectation values

7We refer here to the measurement of the derivative of the cusp anomaly studied in [12], which show a

clear downward behavior — non-perturbative — for g = 10 and beyond.
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〈O〉 of observables in the underlying, target theory are then obtained from the expecta-

tion values 〈O〉m in the theory with the modified, positive-definite fermionic determinant

(det
(
ÕF Õ

†
F ) + µ2

) 1
4 as follows

〈O〉 =
〈OW 〉m
〈W 〉m

, (4.2)

where the total reweighting factor W reads in our case8

W = WsWµ , Ws = sign Pf ÔF Wµ =
(det Ô†F ÔF )

1
4(

det(Ô†F ÔF + µ2)
) 1

4

. (4.3)

Below we will investigate two kinds of observables (bosonic and fermionic correlators) and

evaluate the reweighting factors exactly, which is feasible in the case of small lattices.

We will choose for µ two different values, and comment on the impact of reweighting on

the observables.

For a part of this paper (see section 3 and section 4.2) we work at finite, relatively

small values of N , which allows to use exact algorithms for evaluating with reasonable

effort fermion determinants or Pfaffians. In particular, we employ the algorithm in [31] to

evaluate the Pfaffian of a matrix without reference to its determinant. All the analysis in

section 4.1 the Pfaffian is evaluated stochastically within a rational hybrid Monte Carlo

algorithm. In order to simulate at a point where finite volume effects are small we fix

parameters and thus the line of constant physics in the bare parameter space as in [12].

Namely, in the space of parameters (g,N,M) — the dimensionless coupling g =
√
λ

4π , the

number of lattice points N and the dimensionless “mass” parameter M = ma — we keep

Lm ≡ NM = const ≡ 4. The continuum limit is then taken in this paper via a simple

extrapolation to N → ∞. One of the main conclusions of this paper is that this line of

constant physics needs to be modified, in view of an infinite renormalization occurring for

the fermionic masses. Error bars in the plots below represent statistical errors and include

effects of auto-correlation in the Monte Carlo data [32].

Table 1 collects the parameters of the simulations here presented. Configurations are

generated by the standard Rational Hybrid Monte Carlo (RHMC) algorithm [33, 34], with

a rational approximation of degree 15 for the inverse fractional power in (2.2).

4.1 Observables

4.1.1 The 〈xx∗〉 correlator

We use the new linearization of the (discretized) Lagrangian (2.12) with (2.14)–(2.17) to

repeat the analysis for the mass of the bosonic field x in section 4.1 of [12]. Here, we defined

the timeslice correlation function on the lattice at given time interval t

Cx(t; k) ≡
∑
s,s′

e−ik(s1−s2)Gx(t, s, 0, s′) (4.4)

8Given the exploratory nature of our study, we do not address here a further (so-called RHMC) reweight-

ing factor accounting for the accuracy of the rational approximation for the inversion (ÔF Ô
†
F )−

1
4 in (2.2).
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g T/a× L/a Lm am µ

2 16× 8 4 0.50000 0.01

5 16× 8 4 0.50000 0.01

5 16× 8 4 0.50000 0.02

10,20,25,30,50,100 16× 8 4 0.50000 0.0

20× 10 4 0.40000 0.0

24× 12 4 0.33333 0.0

32× 16 4 0.25000 0.0

48× 24 4 0.16667 0.0

64× 32 4 0.12500 0.0

Table 1. The parameters of our simulations are the coupling g, the temporal (T ) and spatial (L)

extent of the lattice in units of the lattice spacing a. The mass parameter am is given by the fixing

the combination Lm = 4. The reweighting parameter µ is non-zero only for g < 10.

from the connected two-point function

Gx(t, s, t′, s′) ≡ 〈x(t, s)x∗(t′, s′)〉c = 〈x(t, s)x∗(t′, s′)〉 − 〈x(t, s)〉 〈x∗(t′, s′)〉 . (4.5)

The subtraction of the one-point functions is irrelevant in the continuum, where the U(1)

invariance implies 〈x〉 = 〈x∗〉 = 0, but is crucial on the lattice, where the Wilson term

breaks this symmetry. The non-trivial, and linearly divergent, one-point functions of x̃, x̃∗

are calculated at leading order in lattice perturbation theory in appendix B. In figure 3 we

show the plot of 〈x〉 for several values of g and N .

The exponential fall-off of the timeslice correlator for large interval t and zero momen-

tum defines the physical mass of the fluctuation x

Cx(t; 0)
t�1∼ e−tmxLAT . (4.6)

On the lattice the periodic boundary condition on the field x in the time direction imposes

the relation Cx(t) = Cx(T − t), which means that (4.6) is rather

Cx(t; 0)
t�1∼ e−tmxLAT + e−(T−t)mxLAT . (4.7)

The value of the physical mass is measured, on the lattice, from the limit of an effective

mass meff
x for fixed lattice time extension T

mxLAT = lim
T, t→∞

meff
x . (4.8)

We estimate the latter by fitting the timeslice correlator Cx(t; 0) with a double exponential

A
[
e−tm

eff
x + e−(T−t)meff

x

]
(4.9)

on the interval 1� t� T . The overall factor A is irrelevant; measurements of meff
x improve

when T = 2L and data points at t ∼ T/2, which are affected by the largest relative errors,
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Figure 3. Plot of the real and imaginary part of 〈x〉 for several values of g and N . The vacuum

expectation value is normalized by N/(gLm), namely the perturbation theory result (B.10) at

O(1/g), and therefore the constant behavior visible in the flatness shows for 〈x〉 a divergence which

is linear in N .

are discarded. A major source of uncertainty comes from the estimate of the one-point

functions in (4.5), which is reduced as follows. Denoting the Fourier component of x at

zero spatial momentum by

x̃(t) ≡
∑
s

x(t, s) (4.10)

and splitting the field x into real xR and imaginary part xI, the connected timeslice corre-

lator (4.4) takes the form

〈x̃(t)x̃∗(0)〉c = 〈x̃R(t)x̃R(0)〉+ 〈x̃I(t)x̃I(0)〉 − 〈x̃R(t)〉〈x̃R(0)〉 − 〈x̃I(t)〉〈x̃I(0)〉 (4.11)

+ i (〈x̃I(t)x̃R(0)〉 − 〈x̃R(t)x̃I(0)〉) .

The second line vanishes due to translational and time-reversal invariance. In appendix B

we show that it holds

〈x̃R〉 = −〈x̃I〉 , (4.12)

while the relations9

〈x̃R(t) x̃I(0)〉 = 〈x̃R(t)〉〈x̃I(0)〉 , 〈x̃I(t) x̃R(0)〉 = 〈x̃I(t)〉〈x̃R(0)〉 (4.13)

are observed to hold within numerical precision. These last two equations allow us to trade

the disconnected pieces in (4.11) with connected ones, e.g. 〈x̃R(t)〉〈x̃R(0)〉 = −〈x̃R(t)x̃I(0)〉,
which brings (4.11) into the form

Cx(t; 0) = 〈x̃R(t)x̃R(0) + x̃I(t)x̃I(0) + x̃R(t)x̃I(0) + x̃I(t)x̃R(0)〉 (4.14)

9The second equation follows from the first for translational invariance.
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Figure 4. Continuum values for the measured x mass versus g (blue dots). The extrapolation of

the values at finite lattice spacing to the continuum limit is performed as in [12]. The dotted line

is the g →∞ limit of the continuum prediction.

and substantially reduces the statistical error. Figure (4) shows the measured x mass, as

extrapolated in the continuum from (4.8). The estimate is consistent with the large g,

continuum prediction m2
x(g) = m2

2

(
1− 1

8 g +O(g−2)
)

(see discussion in [12]). As already

noticed in [12], there appears to be no infinite renormalization occurring for m2
x. As we

will see below in section (4.1.2), however, this is not the case for the fermionic masses,

implying that eventually the bare parameter m will have to be tuned to adjust for it and

the continuum limit will have to be reformulated.

4.1.2 The fermionic correlators

The fermionic generating functional on the lattice is defined by

ZLAT
F [J ] ≡

∫
[Dψ] e

1
2

∑
t,s,t′,s′ ψ

T (t,s)OF (t,s,t′,s′)ψ(t′,s′)+
∑
t,s ψ

T (t,s) J(t,s) (4.15)

= Pf(OF ) e
1
2

∑
t,s,t′,s′ J

T (t,s)O−1
F (t,s,t′,s′) J(t′,s′)

and evaluated for a given configuration of the bosonic fields. J is a 16-component vector

of Grassmann-valued source fields conjugated to the fermionic field ψ = (θi, θi, η
i, ηi) with

i, j = 1, . . . 4, and sums run over the lattice sites indexed by t = 1, . . . 2N and s = 1, . . . N .

Fermionic two-point functions are obtained differentiating (4.15) with respect to J î with

î, ĵ = 1, . . . 16

∂

∂J î(t, s)

∂

∂J ĵ(t′, s′)
ZLAT
F [J ]

∣∣∣∣∣
J=0

= Pf(OF ) [O−1
F (t, s, t′, s′)]̂iĵ (4.16)
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and integrated over the bosonic fields to obtain the relation

Gψîψĵ (t, s, t
′, s′) ≡ 〈ψî(t, s)ψĵ(t′, s′)〉 = 〈[O−1

F (t, s, t′, s′)]̂iĵ〉 . (4.17)

For the various components we extract the following two-point functions

Gθiθj (t, s, t
′, s′) = 〈[O−1

F (t, s, t′, s′)]i,j〉 , Gθiθj (t, s, t
′, s′) = 〈[O−1

F (t, s, t′, s′)]i,j+4〉 ,
Gηiηj (t, s, t

′, s′) = 〈[O−1
F (t, s, t′, s′)]i+8,j+8〉 , Gηiηj (t, s, t

′, s′) = 〈[O−1
F (t, s, t′, s′)]i+8,j+12〉 ,

Gθiηj (t, s, t
′, s′) = 〈[O−1

F (t, s, t′, s′)]i,j+8〉 , Gθiηj (t, s, t
′, s′) = 〈[O−1

F (t, s, t′, s′)]i,j+12〉 .
(4.18)

In analogy with (4.5), to evaluate the mass we define timeslice correlators of fermionic

fields on the lattice as

CLAT
ψîψĵ

(t; k) =
∑
s1,s2

e−ik(s1−s2)G
ψîψĵ

(t, s1, 0, s2) (4.19)

and project on the zero spacial momentum k = 0.

As usual, it is instructive to start considering the perturbative region. At large g, the

inverse of the fermionic operator (2.13) in momentum-space representation reads

K−1
F (p0, p1) = [detKF (p0, p1)]−1/8 K̂†F (p0, p1) (4.20)

where

[detKF (p0, p1)]1/8 = p̊0
2 + p̊1

2 +
m2

4
+
a2 r2

4

(
p̂4

0 + p̂4
1

)
(4.21)

and

K̂†F (p0, p1) =


r
2

(
p̂2

0 − ip̂2
1

)
ρ†Mu

M −p̊01 −
(
p̊1 − ima2

)
ρ†Mu

M 0

−p̊01 − r
2

(
p̂2

0 + ip̂2
1

)
ρMu

M 0 −
(
p̊1 − ima2

)
ρMu

M(
p̊1 + ima2

)
ρ†Mu

M 0 r
2

(
p̂2

0 + ip̂2
1

)
ρ†Mu

M −p̊01

0
(
p̊1 + ima2

)
ρMu

M −p̊01 − r
2

(
p̂2

0 − ip̂2
1

)
ρMu

M


(4.22)

and we temporarily reinstated the lattice spacing a. The inverse Fourier transform of the

matrix entries of (4.20) over the time-like momentum component

Cψîψĵ (t, p1) =
a

g

∫ ∞
−∞

dp0 e
ip0t[K−1

F (p0, p1)]̂iĵ (4.23)

yields the following analytic predictions for the timeslice correlators (4.19) at g � 1

Cθiθj (t; 0) = Cηiηj (t; 0) =
−π uM

(
ρ†M

)ij
g
√

4−m2a2r2

[
V̄− exp

(
− t

ar
V̄−

)
− V̄+ exp

(
− t

ar
V̄+

)]
(4.24)
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Cθiθj (t; 0) = Cηiηj (t; 0) =
π uM (ρM )ij

g
√

4−m2a2r2

[
V̄− exp

(
− t

ar
V̄−

)
− V̄+ exp

(
− t

ar
V̄+

)]
(4.25)

Cθiθj (t; 0) = Cθiθj (t; 0) = Cηiηj (t; 0)

= Cηiηj (t; 0) =
−2πiδij

g
√

4−m2a2r2

[
exp

(
− t

ar
V̄−

)
− exp

(
− t

ar
V̄+

)]
(4.26)

Cθiηj (t; 0) = Cηiθj (t; 0) =
imaπr uM

(
ρ†M

)ij
g
√

4−m2a2r2

[
exp

(
− t
ar V̄−

)
V̄−

− exp
(
− t
ar V̄+

)
V̄+

]
(4.27)

Cθiηj (t; 0) = Cηiθj (t; 0) =
imaπr uM (ρM )ij

g
√

4−m2a2r2

[
exp

(
− t
ar V̄−

)
V̄−

− exp
(
− t
ar V̄+

)
V̄+

]
(4.28)

Cθiηj (t; 0) = Cθiηj (t; 0) = Cηiθj (t; 0) = Cηiθj (t; 0) = 0 (4.29)

with

V̄± =

√
2±

√
4−m2a2r2 . (4.30)

In the continuum limit (a → 0) V̄+ = 2 + O(a2) and V̄− ∼ amr
2 . Therefore, of the

exponentials exp
(
− t
ar V̄±

)
, only the ones with V̄− survive. The propagators in the first two

lines above vanish in the limit, while the remaining (non-vanishing) correlators reduce to

a single exponential

Cθiθj (t; 0) = Cθiθj (t; 0) = Cηiηj (t; 0) = Cηiηj (t; 0) = −πi
g
δij exp

(
− tm

2

)
(4.31)

Cθiηj (t; 0) = Cηiθj (t; 0) =
iπ

g
uM

(
ρ†M

)ij
exp

(
− tm

2

)
(4.32)

Cθiηj (t; 0) = Cηiθj (t; 0) =
iπ

g
uM (ρM )ij exp

(
− tm

2

)
, (4.33)

in agreement with the continuum results [23]. Notice that the prediction based on the

integrability of the model (namely, the study of the dispersion relations for these modes [35]

via the asymptotic Bethe Ansatz) is that that the masses of the fermionic fields should not

get renormalized, holding their value m/2 for all values of the coupling.

For our measurements we consider the diagonal correlators (4.31). In fact, to reduce

the variance we use the SU(4) ∼ SO(6) symmetry and look at their averaged values

Cθθ(t) =
1

8

∑
i,j

[
Cθiθi(t) + Cθiθi(t)

]
, (4.34)

Cηη(t) =
1

8

∑
i,j

[
Cηiηi(t) + Cηiηi(t)

]
. (4.35)

and at the sum Csum = (Cθθ + Cηη)/2. The discussion above suggests to fit the Monte

Carlo data to a single exponential decay, similar to (4.9). Such fits were tried but rejected
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Figure 5. The exponential decays resulting from the fit of the Monte Carlo data for the fermionic

correlators Csum to (4.36) for g = 10, 30, 50 and various values of N .

because of their large χ2 values of the chi-squared test. However, as will become clear

below, the data from finite lattices with temporal extent T and anti-periodic boundary

conditions can be fitted to the function

Csum(t) ∼ e−t V− + e−t V+ + (t→ T − t) . (4.36)

As shown in figure 5, a linear (∼ N) divergence and a strong dependence on the

coupling g appears in the measured “masses” V+ and V− above. A natural guess is to relate

this divergence to the U(1) symmetry-breaking of our discretization, considering this as the

fermionic counterpart of the bosonic effect 〈x〉 6= 0 which is also linearly divergent — see

section 4.1.1 and discussion below (4.5). In fact, we may perform even in the continuum

the simple exercise of evaluating these correlators on a vacuum with 〈x〉 6= 0. Then at tree

level the diagonal fermionic correlators read

Cθθ(t)〈x〉6=0 ∼
1

2

(
1 +

2
∣∣∂s〈x〉 −m 〈x〉2 ∣∣√

4
∣∣∂s〈x〉 −m 〈x〉2 ∣∣2 +m2

)
e−t Ṽ−

+
1

2

(
1− 2

∣∣∂s〈x〉 −m 〈x〉2 ∣∣√
4
∣∣∂s〈x〉 −m 〈x〉2 ∣∣2 +m2

)
e−t Ṽ+ (4.37)

Cηη(t)〈x〉6=0 ∼
1

2

(
1− 2

∣∣∂s〈x〉 −m 〈x〉2 ∣∣√
4
∣∣∂s〈x〉 −m 〈x〉2 ∣∣2 +m2

)
e−t Ṽ−

+
1

2

(
1 +

2
∣∣∂s〈x〉 −m 〈x〉2 ∣∣√

4
∣∣∂s〈x〉 −m 〈x〉2 ∣∣2 +m2

)
e−t Ṽ+ (4.38)
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with

Ṽ± =

√√√√m2

4
+ 2

∣∣∣∣∂s〈x〉 −m〈x〉2
∣∣∣∣2 ± 2

∣∣∣∣∂s〈x〉 −m〈x〉2
∣∣∣∣
√∣∣∣∣∂s〈x〉 −m〈x〉2

∣∣∣∣2 +
m2

4
. (4.39)

Clearly, as 〈x〉 = 0, it is Ṽ+ = Ṽ− ≡ m/2 as it should.10 Also, the sum of the correlators

above reads

Csum(t)〈x〉6=0 =
(Cθθ(t)〈x〉6=0 + Cηη(t)〈x〉6=0)

2
∼ e−t Ṽ− + e−t Ṽ+ (4.40)

and thus justifies the choice for the fit functions in (4.36). We may also substitute in (4.39)

the leading value for 〈x〉 obtained in perturbation theory in (B.10) (considering ∂s〈x〉 =

0), thus obtaining for the exponential decay of the fermionic two-point functions above

the expression

V PT
± =

m

2

N
√

2

g Lm

(√
1 +

(g Lm)2

2N2
± 1

)
. (4.41)

Plotting the exponential decays V± obtained via MC measurements against V PT
± as in

figure 6 one may notice a good convergence of the extrapolations to the expected values,

at large g.

The observed divergence in the fermionic masses signals that the continuum limit

should be redefined. In analogy with the case of chiral symmetry breaking of fermionic

discretizations in lattice QCD (see e.g. [27]), one may interpret the divergence as an additive

mass renormalisation of the bare coupling m and proceed by studying the violation of the

continuum Ward identities on the lattice. We hope to report soon on this.

4.2 Impact of reweighting on observables

As explained in section 4, we perform simulations with a fermionic operator (4.1) modified

both via the replacement (2.2) with the absolute value of its Pfaffian and by a small twisted-

mass term to avoid the instabilities due to its near-zero modes. The sign of the Pfaffian

and the low modes of OF are then taken into account respectively by the reweighting Ws

and Wµ in (4.3). Here we comment on the impact of such reweighting on the observables.

A pictorial way to study these effects is to look at the individual MC histories11 of

observables and reweighting factors, as well as the MC histories of their product (so, look

at the observables “before” and “after” the reweighting). Figure 7 shows the MC evolution

of the reweighting factors and of the observables as the simulation evolves, for two different

values of the coupling g = 5 (left) and g = 2 (right) and the same value of the twisted-mass

10It is worth emphasizing that the continuum theory has full SO(6)×U(1) symmetry, in particular 〈x〉 = 0.

Namely, equations (4.37), (4.38) are written for illustrative purposes, supporting the interpretation that

the divergence of the fermionic masses originates from symmetry breaking.
11In MC simulations, vacuum expectation values are replaced by ensemble averages. Ensembles are

generated by a Markov process (here, the RHMC) and the MC history is the change of the observable along

the Markov process. In this sense it only makes sense to compare MC histories from the same simulation

(see e.g. [27]).
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Figure 6. The ratio of the exponential decays obtained from the MC measurements (via the

fit (4.36)) and and the PT prediction (4.41) for g = 10, 30, 50 and various values of N .

parameter µ = 0.01. There appear to be no (statistical) correlation between the sign-

reweighting Ws and the observables, nor between Ws and the µ-reweighting Wµ. However,

as discussed in the previous section, small eigenvalues (and thus zero-crossings) are more

probable to occur at lower g, which obviously reflects in a more severe sign problem (right

diagram, g = 2).

As expected for bosonic observables, the fluctuations of the bosonic correlator are

little correlated to those of the µ-reweighting factor Wµ. This is not so for the fermionic

correlator. It is easy to spot a simultaneous occurrence of the negative peaks for the µ-

reweighting for g = 2, upper right-diagram in figure 7, and the valleys in the value of the

fermionic correlator (near MDU 20, 40 and 46).

This correspondence between Wµ and the fermionic correlator is due to the sensitiv-

ity of the two-point function, built out of the inverse fermionic operator, on the small

eigenvalues of such operator, to which Wµ is also (by definition) sensitive.

In general, for the reweighting to work in practice, the fluctuations of the reweighting

factor should be reasonably small (not to dominate the statistical error of the measured

observable) [26, 36, 37]. Such fluctuations clearly depend on the choice of µ. A finite value
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Figure 7. Time history of the reweighting factors Wµ and Ws in (4.3), the bosonic correlator

Cxx(t) and the fermionic correlator Cηη(t) on two ensembles with L = 8, µ = 0.01 and g = 5

(left), g = 2 (right). The correlators are evaluated on a time-slice t = T/4. The last three lines are

normalized, so that they average to 1 (e.g. the third line is actually Cxx/〈Cxx〉). For g = 2 there is

a clear “correlation” between spikes in Wµ and the fermionic correlator.

of µ increases the ergodicity of the algorithm: field configurations with small eigenvalues

of the original operator become statistically more significant in the path integral. On

the other side, if µ becomes too large, the MC histories of fermionic correlators, which

are controlled by the inverse of the modified operator, tend to develop sudden fluctuations.

These fluctuations are unphysical, however they are cancelled in the ensemble average (4.2)

by a smaller Wµ.

That the choice of µ should be made with care is clear from figure 8, where Monte

Carlo histories are shown for two different values, µ = 0.01 (left) and µ = 0.02 (right),

of the twisted-mass parameter and the same value g = 5 of the coupling. A doubled

value of µ enhances of a factor of 10 the fluctuations of the reweighting factor Wµ (first

line). The sign-reweighting Ws (second line, in which the red dotted lines represent the

average) also appears to be sensitive to the fact that zero eigenvalues are more accessible for

larger µ, something visible in the third line, where the logarithm of the lowest eigenvalue

in the spectrum of OFO
†
F appears. The bosonic correlator (fourth line) is as expected

independent on the choice of the twisted-mass regulator. The situation is different for the

fermionic correlator, which for larger µ develops spikes (fifth line). The spikes are cancelled,

as expected, after reweighting (sixth line).
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Figure 8. Time history of the reweighting factors Wµ and Ws in (4.3), the bosonic correlator

Cxx(t) and the fermionic correlator Cηη(t) on two ensembles with L = 8, g = 5 with two different

values of the reweighting parameter, µ = 0.01 (left) and µ = 0.02 (right). The correlators are

evaluated on a time-slice t = T/4. The last three lines are normalized, so that they average to 1

(e.g. the third line is actually Cxx/〈Cxx〉). For larger µ, zero eigenvalues are more accessible and

the fermionic correlator develops spikes. The latter are cancelled after reweighting (sixth line).

A more quantitative way to see the effect of reweighting on the observables is a study

of the covariance between the observables O and the reweighting factors W .12 While we

have observed that, as expected, the largest covariance is between the µ-reweighting and

the value of the lowest eigenvalue of the fermionic operator, we could not in general draw a

conclusive picture from this study because the effects are smaller than the statistical error.

Table 2 shows the effect of reweighting on the numerical values of the ensemble averages

at one value of the coupling (g = 5) and two values µ = 0.01, 0.02 of the µ-reweighting. It

is interesting to notice that the sign-reweighting seems practically not to have effect on the

measured observables. About the µ-reweighting, although not statistically significant, the

effect is larger for the fermionic correlator.

Our last observation is about the behavior of the reweighting factors with the lattice

spacing. This is done in figure 9. The sign-reweighting Ws shows a moderate (linear)

dependence and tends towards zero for 1/N → 0. However, in the region of our simulations

it is well above zero. The fluctuations of the µ-reweighting (at fixed µ) are small and

compatible with an exponential dependence on N . Extrapolating these points simulations

up to N ∼ 32 seems feasible at g = 5.

12In particular, a vanishing covariance (from which 〈OW 〉 = 〈O〉 〈W 〉) would imply the cancellation

of 〈W 〉 in (4.2). In this case the reweighting would not change the value of the observable, but only its

variance.
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g = 5, µ = 0.01 g = 5, µ = 0.02

< Cxx∗ > 0.1620(44) 0.1619(31)

< Cxx∗ >Ws 0.1620(44) 0.1624(31)

< Cxx∗ >W 0.1604(49) 0.1643(38)

< Cηη∗ > 0.1464(32) 0.1502(40)

< Cηη∗ >Ws
0.1461(32) 0.1505(34)

< Cηη∗ >W 0.1508(37) 0.1584(42)

Table 2. Effect of the reweighting on the two-point functions.
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Figure 9. Lattice spacing dependence of < Ws > and variance of Wµ at g = 5 and µ = 0.01.
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A Conventions and matrix algebra

In the action (2.1) we used the six 4× 4 matrices (ρM )ij , off-diagonal blocks of the SO(6),

8× 8 Dirac matrices in chiral representation

γM ≡
(

0 ρ†M
ρM 0

)
=

(
0 (ρM )ij

(ρM )ij 0

)
(A.1)
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for which

ρMij = −ρMji , (ρM )ilρNlj + (ρN )ilρMlj = 2δMNδij , (ρM )ij ≡ −(ρMij )∗ . (A.2)

A possible explicit representation is

ρ1
ij =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , ρ2
ij =


0 i 0 0

−i 0 0 0

0 0 0 −i

0 0 i 0

 , ρ3
ij =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 ,

ρ4
ij =


0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0

 , ρ5
ij =


0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

 , ρ6
ij =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 .

The SO(6) generators are built out of the ρ-matrices via

ρMNi
j ≡

1

2
[(ρM )ilρNlj − (ρN )ilρMlj ] (A.3)

and the following identities hold

(ρMN )ij =
(

(ρMN ) ji

)∗
(ρMN )ij = −(ρMN ) i

j , (A.4)

where in the last equation we used that 1
2(ρM

i`
ρN`j − ρN

i`
ρM`j ) = −1

2(ρMj` ρ
N`i − ρNj` ρM

`i
).

Useful flipping rules are

η ρM θ = ηi ρMij θ
j = −θj ρMij ηi = θj ρMji η

i ≡ θi ρMij ηj = θ ρM η (A.5)

η†ρ†M θ† = ηi ρ
Mij

θj = −θj ρMij
ηi = θj ρ

Mji
ηi ≡ θi ρMij

ηj = θ†ρ†M η† (A.6)

ηi (ρMN )ij θ
j = −θj (ρMN )ij ηi = θj (ρMN ) i

j ηi ≡ θi (ρMN ) ji ηj . (A.7)

In the main text, for the steps leading from (2.3) to (2.5) we used the following addi-

tional properties

(ρM )im(ρM )kn = 2εimkn (A.8)

(ρM )im(ρM )nj = 2
(
δijδ

m
n − δinδmj

)
(A.9)

εimkn(ρM )mj(ρ
L)nl + εmjnl(ρ

M )im(ρL)kn = (ρ{M )ik(ρL})jl

+ δkj (ρL)im(ρM )ml + δil(ρ
M )km(ρL)mj

+ δML
(
−4δilδ

k
j + 2δijδ

k
l

)
(A.10)

−(ρMN )ij(ρ
ML)klnNnL = −2(ρN )ik(ρL)jlnNnL − δijδkl + 2δilδ

k
j (A.11)

leading to the identification(
i ηi(ρ

MN )ijn
Nηj

)2
= −3(η2)2 + 2ηi(ρ

N )iknNηkη
j(ρL)jlnLη

l (A.12)
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Around equation (2.6) we also defined

Σj
i = ηiη

j Σ̃i
j = (ρN )iknN (ρL)jlnLηkη

l (A.13)

where we simply indicate Σi
j = Σi

j = Σj
i since

Σi
j ≡ (Σi

j)∗ = (ηj)∗(ηi)
∗ = ηjη

i = Σj
i (A.14)

and similarly for Σ̃. It is simple to check that

Σj
iΣ

i
j = −(η2)2 Σ̃j

i Σ̃
i
j = −(η2)2 Σi

jΣ̃
j
i = −

∣∣∣ηi(ρN )iknNηk

∣∣∣2 (A.15)

(Σj
i )
∗ = Σi

j (Σ̃j
i )
∗ = Σ̃i

j (A.16)

We conclude this section with a detailed counting of the degrees of freedom implied

in the Hubbard Stratonovich transformation (2.11). The 4 × 4 matrix Σ+ is hermitian

and contains 16 real d.o.f. One can project the two indices i and j onto irreducible su(4)

representations

4⊗ 4̄ = 15⊕ 1 (A.17)

or, more explicitly

Σ+
j
i =

1

4
(ρMN )j iSMN +

1

2
δjiS (A.18)

The term TrΣ+Σ+ in the Lagrangian would read

TrΣ+Σ+ =
1

2
SMNS

MN + S2 (A.19)

This is a sum of 15 + 1 real terms (remember SMN is an antisymmetric 6 × 6 matrix).

To any of these terms one can associate, via a Hubbard Stratonovich transformation, a

real scalar field (therefore 15 scalars φMN in the adjoint and one in the singlet). Then, by

the opposite procedure one can rebuild the matrix φji used in (2.11). This proves that the

matrix φji is hermitian.

B One-point function for x, x∗

In the continuum, the action (2.1) and its linearized version (2.12), (2.13), (2.14) enjoy the

SO(6)×U(1) symmetry of the cusp background. In particular, the U(1) invariance implies

〈x〉 = 〈x∗〉 = 0. The Wilson-like discretization (2.15)–(2.17) adopted in this paper for the

fermionic sector breaks the U(1) symmetry, and as a consequence the fields x, x∗ acquire

then a non-trivial, in fact divergent, 1-point function. We evaluate here this one-point

function at leading order, O(g−1), in lattice perturbation theory.

The continuum sigma-model loop expansion for this model (in AdS light-cone gauge) is

studied in [23, 24], and a first calculation in lattice perturbation theory appears in section

3 (see also appendix A) of [12]. Here we recall that in order to perform a perturbative

computation, in the continuum and on the lattice, one cannot simply expand around the

trivial vacuum where all the fields are set to zero — this is prevented by the presence of
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inverse powers of the radial coordinate z in the Lagrangian. One proceeds then picking

one of the degenerate “null cusp” vacua corresponding to the SO(6) directions of zM (this

breaks the SO(6) symmetry to a SO(5)), say uM = (0, 0, 0, 0, 0, 1), where uM , with

uMuM = 1 are part of the standard definition of Poincare’ patch coordinates z̃M = eφ̃ũM ,

z̃ = eφ̃. In terms of

ũa =
ya

1 + 1
4y

2
, ũ6 =

1− 1
4y

2

1 + 1
4y

2
, y2 ≡

5∑
a=1

(ya)2 , a = 1, . . . , 5 , (B.1)

the vacuum corresponds then to ya = φ = 0.

Because of our Wilson discretization, the diagonal fermionic propagators Cηiηi and

Cηiηi , corresponding to the two lower diagonal entries of (4.20), are non-vanishing. The

cubic interaction

Sxηη = 2g

∫
dt ds

[
ηi ρMij η

j

(
∂sx−

m

2
x

)
uM − ηi ρijM ηj

(
∂sx
∗ − m

2
x∗
)
um
]
, (B.2)

gives then a contribution at order 1/g to the 1-point function of x, x∗ through a tadpole

graph with a single fermionic loop. In momentum space the relevant propagators read

Cxx∗(p0, p1) =
1

g

2

p̂2 + m2

2

(B.3)

Cηiηj (p0, q1) =
a

g
[K−1

F (p0, p1)]44 = −a r
2 g

(p̂2
0 − i p̂2

1) ρMij u
M

[detKF (p0, p1)]1/8
(B.4)

Cηiηj (p0, q1) =
a

g
[K−1

F (p0, p1)]33 =
a r

2 g

(p̂2
0 + i p̂2

1) ρijMu
M

[detKF (p0, p1)]1/8
. (B.5)

where the bosonic one (B.3) is obtained from the continuum [12, 23] with the naive re-

placement pµ → p̂µ, and the fermionic propagators are taken from (4.20)–(4.21)–(4.22).

For the x-field, Wick-contracting and using (B.3) and (B.4) and the second term

in (B.2), one writes formally, in momentum space, at leading order (LO) in 1/g expansion

〈x̃(q)〉LO =
8 r a

g
δ(2)(q)

i q̂1 − m
2

q̂2 + m2

2

uMρijMρ
N
iju

N

×
∫∫ π

a

−π
a

d2p

(2π)2

p̂2
0 − i p̂2

1

p̊0
2 + p̊1

2 + m2

4 + a2 r2

4

(
p̂4

0 + p̂4
1

) , (B.6)

where we denoted with q the 2-momentum of the external bosonic field x, with p0, p1

the 2-momentum of the fermion in the loop and we used (4.21). Above, δ(2)(q) is the

momentum conservation at the vertex. Rescaling the momenta with the lattice spacing,

using that (A.2) implies ρijMρ
N
iju

MuN = −4 and setting r = 1 one obtains

〈x̃(q)〉LO = − 32

g a
(1− i) I(M) δ(2)(q)

i q̂1 − m
2

q̂2 + m2

2

, (B.7)

where (M = ma)

I(M) =

∫ π

−π

dp0 dp1

(2π)2

sin2 p0

2

sin2 p0 + sin2 p1 + 4 sin4 p0

2 + 4 sin4 p1

2 +M2
, with I(0) =

1

32
.

(B.8)
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Fourier transforming back in position space one obtaines

〈x〉LO =

∫∫ π
a

−π
a

dq0dq1 e
−it q0−is q1 〈x̃(q)〉

= − 32

g a
(1−i) I(M)

∫∫ π
a

−π
a

dq0dq1 δ(q0) δ(q1) e−it q0−is q1
i
a sin q1

2 − m
2

1
a2 sin2 q0

2 + 1
a2 sin2 q1

2 + m2

2

= −32

g
(1−i) I(M)

1

ma
.

(B.9)

Using that in the continuum limit a → 0 the product mL = MN is fixed and that

I(0) = 1
32 , we find that the one-point function diverges linearly in N (= L/a) as

〈x〉LO =
N

gmL
(1− i) . (B.10)

This result is perfectly consistent with the plot of figure 3 for several values of (large) g.

Repeating the computation for the field x∗, therefore using the first term in (B.2) and (B.4),

it is easy to verify that

〈x∗〉LO =
N

gmL
(1 + i) . (B.11)

The two equations above are consistent with (4.12) at leading (1/g) order in sigma-model

perturbation theory.
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