264 research outputs found

    Glucocorticoids as regulatory signals during intrauterine development.

    Get PDF
    What is the topic of this review? This review discusses the role of the glucocorticoids as regulatory signals during intrauterine development. It examines the functional significance of these hormones as maturational, environmental and programming signals in determining offspring phenotype. What advances does it highlight? It focuses on the extensive nature of the regulatory actions of these hormones. It highlights the emerging data that these actions are mediated, in part, by the placenta, other endocrine systems and epigenetic modifications of the genome. Glucocorticoids are important regulatory signals during intrauterine development. They act as maturational, environmental and programming signals that modify the developing phenotype to optimize offspring viability and fitness. They affect development of a wide range of fetal tissues by inducing changes in cellular expression of structural, transport and signalling proteins, which have widespread functional consequences at the whole organ and systems levels. Glucocorticoids, therefore, activate many of the physiological systems that have little function in utero but are vital at birth to replace the respiratory, nutritive and excretory functions previously carried out by the placenta. However, by switching tissues from accretion to differentiation, early glucocorticoid overexposure in response to adverse conditions can programme fetal development with longer term physiological consequences for the adult offspring, which can extend to the next generation. The developmental effects of the glucocorticoids can be direct on fetal tissues with glucocorticoid receptors or mediated by changes in placental function or other endocrine systems. At the molecular level, glucocorticoids can act directly on gene transcription via their receptors or indirectly by epigenetic modifications of the genome. In this review, we examine the role and functional significance of glucocorticoids as regulatory signals during intrauterine development and discuss the mechanisms by which they act in utero to alter the developing epigenome and ensuing phenotype.We would like to thank the many members of the Department of Physiology, Development and Neuroscience who have contributed to discussions and helped with our own studies cited here. We are also grateful for financial support from the BBSRC (BB/I011773/1), Horserace Betting Levy Board (VET/PRJ/736) and the Centre for Trophoblast Research at the University of Cambridge.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1113/EP08521

    Pancreas deficiency modifies bone development in the ovine fetus near term.

    Get PDF
    Hormones have an important role in the regulation of fetal growth and development, especially in response to nutrient availability in utero. Using micro-CT and an electromagnetic three-point bend test, this study examined the effect of pancreas removal at 0.8 fraction of gestation on the developing bone structure and mechanical strength in fetal sheep. When fetuses were studied at 10 and 25 days after surgery, pancreatectomy caused hypoinsulinaemia, hyperglycaemia and growth retardation which was associated with low plasma concentrations of leptin and a marker of osteoclast activity and collagen degradation. In pancreatectomized fetuses compared to control fetuses, limb lengths were shorter, and trabecular (Tb) bone in the metatarsi showed greater bone volume fraction, Tb thickness, degree of anisotropy and porosity, and lower fractional bone surface area and Tb spacing. Mechanical strength testing showed that pancreas deficiency was associated with increased stiffness and a greater maximal weight load at fracture in a subset of fetuses studied near term. Overall, pancreas deficiency in utero slowed the growth of the fetal skeleton and adapted the developing bone to generate a more compact and connected structure. Maintenance of bone strength in growth-retarded limbs is especially important in a precocial species in preparation for skeletal loading and locomotion at birth

    Maternal Dexamethasone Treatment Alters Tissue and Circulating Components of the Renin-Angiotensin System in the Pregnant Ewe and Fetus.

    Get PDF
    Antenatal synthetic glucocorticoids promote fetal maturation in pregnant women at risk of preterm delivery and their mechanism of action may involve other endocrine systems. This study investigated the effect of maternal dexamethasone treatment, at clinically relevant doses, on components of the renin-angiotensin system (RAS) in the pregnant ewe and fetus. From 125 days of gestation (term, 145 ± 2 d), 10 ewes carrying single fetuses of mixed sex (3 female, 7 male) were injected twice im, at 10-11 pm, with dexamethasone (2 × 12 mg, n = 5) or saline (n = 5) at 24-hour intervals. At 10 hours after the second injection, maternal dexamethasone treatment increased angiotensin-converting enzyme (ACE) mRNA levels in the fetal lungs, kidneys, and heart and ACE concentration in the circulation and lungs, but not kidneys, of the fetuses. Fetal cardiac mRNA abundance of angiotensin II (AII) type 2 receptor decreased after maternal dexamethasone treatment. Between the two groups of fetuses, there were no significant differences in plasma angiotensinogen or renin concentrations; in transcript levels of renal renin, or AII type 1 or 2 receptors in the lungs and kidneys; or in pulmonary, renal or cardiac protein content of the AII receptors. In the pregnant ewes, dexamethasone administration increased pulmonary ACE and plasma angiotensinogen, and decreased plasma renin, concentrations. Some of the effects of dexamethasone treatment on the maternal and fetal RAS were associated with altered insulin and thyroid hormone activity. Changes in the local and circulating RAS induced by dexamethasone exposure in utero may contribute to the maturational and tissue-specific actions of antenatal glucocorticoid treatment.The study was supported by the Biotechnology and Biological Sciences Research Council and Tommy’s, the baby charity.This is the final version. It was first published by the Endocrine Society at http://press.endocrine.org/doi/abs/10.1210/en.2015-119

    Effects of birth weight, sex and neonatal glucocorticoid overexposure on glucose-insulin dynamics in young adult horses.

    Get PDF
    In several species, adult metabolic phenotype is influenced by the intrauterine environment, often in a sex-linked manner. In horses, there is also a window of susceptibility to programming immediately after birth but whether adult glucose-insulin dynamics are altered by neonatal conditions remains unknown. Thus, this study investigated the effects of birth weight, sex and neonatal glucocorticoid overexposure on glucose-insulin dynamics of young adult horses. For the first 5 days after birth, term foals were treated with saline as a control or ACTH to raise cortisol levels to those of stressed neonates. At 1 and 2 years of age, insulin secretion and sensitivity were measured by exogenous glucose administration and hyperinsulinaemic-euglycaemic clamp, respectively. Glucose-stimulated insulin secretion was less in males than females at both ages, although there were no sex-linked differences in glucose tolerance. Insulin sensitivity was greater in females than males at 1 year but not 2 years of age. Birth weight was inversely related to the area under the glucose curve and positively correlated to insulin sensitivity at 2 years but not 1 year of age. In contrast, neonatal glucocorticoid overexposure induced by adrenocorticotropic hormone (ACTH) treatment had no effect on whole body glucose tolerance, insulin secretion or insulin sensitivity at either age, although this treatment altered insulin receptor abundance in specific skeletal muscles of the 2-year-old horses. These findings show that glucose-insulin dynamics in young adult horses are sexually dimorphic and determined by a combination of genetic and environmental factors acting during early life.We would like to thank the staff of the University Biofacilities Service for their care of the animals. We are also grateful to the Horserace Betting Levy Board for their financial support

    Neonatal glucocorticoid overexposure alters cardiovascular function in young adult horses in a sex-linked manner

    Get PDF
    Prenatal glucocorticoid overexposure has been shown to program adult cardiovascular function in a range of species but much less is known about the long-term effects of neonatal glucocorticoid overexposure. In horses, prenatal maturation of the hypothalamus-pituitary-adrenal axis and the normal prepartum surge in fetal cortisol occur late in gestation compared to other precocious species. Cortisol levels continue to rise in the hours after birth of full term foals and increase further in the subsequent days in premature, dysmature and maladapted foals. Thus, this study examined the adult cardiovascular consequences of neonatal cortisol overexposure induced by adrenocorticotropic hormone (ACTH) administration to full-term male and female pony foals. After catheterisation at 2-3 years of age, basal arterial blood pressures (BP) and heart rate (HR) were measured together with the responses to phenylephrine (PE) and sodium nitroprusside (SNP). These data were used to assess cardiac baroreflex sensitivity. Neonatal cortisol overexposure reduced both the pressor and bradycardic responses to PE in the young adult males, but not females. It also enhanced the initial hypotensive response to SNP, slowed recovery of BP after infusion and reduced the gain of the cardiac baroreflex in the females, but not males. Basal diastolic pressure and cardiac baroreflex sensitivity also differed with sex, irrespective of neonatal treatment. The results show that there is a window of susceptibility for glucocorticoid programming during the immediate neonatal period that alters cardiovascular function in young adult horses in a sex-linked manner

    Effects of cortisol and dexamethasone on insulin signalling pathways in skeletal muscle of the ovine fetus during late gestation.

    Get PDF
    Before birth, glucocorticoids retard growth, although the extent to which this is mediated by changes in insulin signalling pathways in the skeletal muscle of the fetus is unknown. The current study determined the effects of endogenous and synthetic glucocorticoid exposure on insulin signalling proteins in skeletal muscle of fetal sheep during late gestation. Experimental manipulation of fetal plasma glucocorticoid concentration was achieved by fetal cortisol infusion and maternal dexamethasone treatment. Cortisol infusion significantly increased muscle protein levels of Akt2 and phosphorylated Akt at Ser473, and decreased protein levels of phosphorylated forms of mTOR at Ser2448 and S6K at Thr389. Muscle GLUT4 protein expression was significantly higher in fetuses whose mothers were treated with dexamethasone compared to those treated with saline. There were no significant effects of glucocorticoid exposure on muscle protein abundance of IR-β, IGF-1R, PKCζ, Akt1, calpastatin or muscle glycogen content. The present study demonstrated that components of the insulin signalling pathway in skeletal muscle of the ovine fetus are influenced differentially by naturally occurring and synthetic glucocorticoids. These findings may provide a mechanism by which elevated concentrations of endogenous glucocorticoids retard fetal growth
    • …
    corecore