361 research outputs found

    Pre-test CFD simulations of the NACIE-UP BFPS test section

    Get PDF
    The present paper is focused on the CFD pre-test analysis and design of the new experimental facility Blocked Fuel Pin bundle Simulator (BFPS) that will be installed into the NACIE-UP (NAtural CIrculation Experiment-UPgrade) facility located at the ENEA Brasimone Research Center (Italy). The BFPS test section will carry out suitable experiments to fully investigate different flow blockage regimes in a 19 fuel pin bundle providing experimental data in support of the development of the ALFRED (Advanced Lead-cooled Fast Reactor European Demonstrator) LFR DEMO. The geometrical domain of the fuel pin bundle simulator was designed to reproduce the geometrical features of ALFRED, e.g. the external wrapper in the active region and the spacer grids. Pre-tests calculations were carried out by applying accurate boundary conditions; the conjugate heat transfer in the clad is also considered. The blockages investigated are internal blockages of different extensions and in different locations: central sub-channel blockage, corner sub-channel blockage, edge sub-channel blockage, one sector blockage, and two-sector blockage. RANS simulations were carried out adopting the ANSYS CFX commercial code with the laminar sublayer resolved by the mesh resolution. The loci of the peak temperatures and their width as predicted by the CFD simulations are used for determining the location of the pin bundle instrumentation. The CFD pre-test analysis allowed also investigating the temperature distribution in the clad to operate the test section safely

    Post-test simulations for the NACIE-UP benchmark by STH codes

    Get PDF
    This paper illustrates the results obtained in the last phase of the NACIE-UP benchmark activity foreseen inside the EU SESAME Project. The purpose of this research activity, performed by system thermal–hydraulic (STH) codes, is finalized to the improvement, development and validation of existing STH codes for Heavy Liquid Metal (HLM) systems. All the participants improved their modelling of the NACIE-UP facility, respect to the initial blind simulation phase, adopting the actual experimental boundary conditions and reducing as much as possible sources of uncertainty in their numerical model. Four different STH codes were employed by the participants to the benchmark to model the NACIE-UP facility, namely: CATHARE for ENEA, ATHLET for GRS, RELAP5-3D© for the “Sapienza” University of Rome and RELAP5/Mod3.3(modified) for the University of Pisa. Three reference tests foreseen in the NACIE-UP benchmark and carried out at ENEA Brasimone Research Centre were analysed from four participants. The data from the post-test analyses, performed independently by the participant using different STH codes, were compared together and with the available experimental results and critically discussed

    Experimental characterization of leak detection systems in HLM pool using LIFUS5/Mod3 facility

    Get PDF
    In the framework of the European Union MAXSIMA project, the safety of the steam generator (SG) adopted in the primary loop of the Heavy Liquid Metal Fast Reactor has been studied investigating the consequences and damage propagation of a SG tube rupture event and characterizing leak rates from typical cracks. Instrumentation able to promptly detect the presence of a crack in the SG tubes may be used to prevent its further propagation, which would lead to a full rupture of the tube. Application of the leak-before-break concept is relevant for improving the safety of a reactor system and decreasing the probability of a pipe break event. In this framework, a new experimental campaign (Test Series C) has been carried out in the LIFUS5/Mod3 facility, installed at ENEA Centro Ricerche Brasimone, in order to characterize and to correlate the leak rate through typical cracks occurring in the pressurized tubes with signals detected by proper transducers. Test C1.3_60 was executed injecting water at about 20 bars and 200°C into lead-bismuth eutectic alloy. The injection was performed through a laser microholed plate 60 ÎĽm in diameter. Analysis of the thermohydraulic data permitted characterization of the leakage through typical cracks that can occur in the pressurized tubes of the SG. Analysis of the data acquired by microphones and accelerometers highlighted that it is possible to correlate the signals to the leakage and the rate of release

    Experience with regorafenib in the treatment of hepatocellular carcinoma

    Get PDF
    Regorafenib is a diphenylurea oral multikinase inhibitor, structurally comparable to sorafenib, which targets a variety of kinases implicated in angiogenic and tumor growth-promoting pathways. Regorafenib was the first agent to positively show significant survival advantage as a second-line therapy in patients with unresectable hepatocellular carcinoma (HCC) who had previously failed first-line treatment with sorafenib. Recent evidence has shown that its antitumor efficacy is due to a comprehensive spectrum of tumor neo-angiogenesis and proliferation inhibition and immunomodulatory effects on the tumor microenvironment, which plays a crucial role in tumor development. This review addresses the rationale and supporting evidence for regorafenib’s efficacy in HCC that led to regorafenib’s approval as a second-line therapy. In addition, we review proof from clinical practice studies that validate the RESORCE trial results. We discuss regorafenib’s potential role in the newly emerging therapeutic strategy based on combination with immune checkpoint blockade and its possible extensibility to patient categories not enrolled in the registrative study

    Coupled system thermal Hydraulics/CFD models: General guidelines and applications to heavy liquid metals

    Get PDF
    This work aims to review the general guidelines to be adopted to perform coupled System Thermal Hydraulics (STH)/CFD calculations. The coupled analysis is often required when complex phenomena characterized by different characteristic time and length scales are investigated. Indeed, by STH/CFD coupling the main drawbacks of both stand-alone codes are overcome, reducing the computational cost and providing more realistic solutions. A review of several works available in literature and involving different coupling approaches, codes, time-advancing schemes and application fields is given. Besides STH/CFD coupling techniques, spatial domains and numerical schemes are analysed in detail. A brief description of applications to heavy liquid metal systems is also reported; lessons drawn in the frame of these and other works are then considered in order to develop a set of good practice guidelines for coupled STH/CFD applications

    Simulation of operational conditions of HX-HERO in the CIRCE facility with CFD/STH coupled codes

    Get PDF
    Abstract The paper describes the application of a coupled methodology between Fluent CFD code and RELAP5 System Thermal-Hydraulic code developed at the DICI (Dipartimento di Ingegneria Civile e Industriale) of the University of Pisa. The methodology was applied specifically to the LBE-water heat exchanger HERO located inside the S100 vessel of the CIRCE facility, built at ENEA Brasimone Research Centre, to investigate the capabilities of this component. In the proposed methodology, the primary side of the HX-HERO, containing LBE, is simulated by the CFD code, while the secondary side, containing a two phase mixture of water and vapour, is reproduced by the System Thermal-Hydraulic code. During the calculation the two codes exchange, at the coupled boundaries: the bulk temperature and heat transfer coefficient of the ascending water (RELAP5 to Fluent) and the wall temperature at the water side surface of the pipes (Fluent to RELAP5). The coupling technique was tested by comparing the numerical results with the experimental data recently obtained by ENEA; the numerical results predicted well the qualitative trend of the temperature and provided an overall good prediction of the temperature also from a quantitative point of view. It is worth noticing that this good performance remained reliable for all the cases simulated, proving the general applicability of the methodology

    Prognosis of Single Early-Stage Hepatocellular Carcinoma (HCC) with CEUS Inconclusive Imaging (LI-RADS LR-3 and LR-4) Is No Better than Typical HCC (LR-5)

    Get PDF
    The American College of Radiology (ACR) released the Liver Imaging Report and Data System (LI-RADS) scheme, which categorizes hepatic nodules in risk classes from LR-1 to LR-5 (according to the degree of risk to be HCC) and LR-M (probable malignancy not specific for HCC). The aim of this study was to test whether HCC with different LR patterns on CEUS have different overall survival (OS) and recurrence-free survival (RFS). We retrospectively enrolled 167 patients with the first definitive diagnosis of single HCC (by using CT/MRI or histological techniques if CT/MRI were inconclusive) for whom CEUS examination was available. The median size of HCC lesions was 2.2 cm (range 1.0–7.2 cm). According to CEUS LI-RADS classification, 28 patients were in LR-3, 48 in LR-4, 83 in LR-5, and 8 in LR-M. Patient liver function and nodule characteristics were not statistically different between CEUS LI-RADS classes. Using univariate analysis, CEUS LI-RADS class was not found to be a predictor of survival (p = 0.347). In conclusion, HCC showing the CEUS LI-RADS classes LR-3 and LR-4 have no better clinical outcome than typical HCC. Such data support the EASL policy, aimed at conclusive diagnostic investigations of indeterminate nodules up to obtaining histological proof to avoid leaving aggressive HCC not timely treated

    RELAP5/SIMMER-III code coupling development for PbLi-water interaction

    Get PDF
    A major safety issue in the Water-Cooled Lead-Lithium Breeding Blanket (WCLL-BB) system foreseen for fusion reactor is the interaction concerning the primary coolant (water) and the neutron multiplier (PbLi), due to a hypothetical tube rupture in the coolant circuit. This scenario involves an exothermic chemical reaction between PbLi and water with the production of hydrogen, in addition to critical interactions in a complex multiphase system in non-thermal equilibrium. In recent years the PbLi/water reaction was successfully implemented in the SIMMER-III code and validated against data from the LIFUS5/Mod3 experimental campaign. However, due to limitations of SIMMER-III, this work was restricted to the prediction of the phenomena inside the vessel, neglecting the simulation of the injection line. Nevertheless, since the injection line may actually have an important effect on the development of the transient, the simulation of the whole facility would be highly desirable. Indeed, the University of Pisa recently developed a coupling methodology between the SIMMER-III and RELAP5/Mod3.3 codes and applied it to simple single-phase cases. In this paper the complete simulation of the LIFUS5/Mod3 facility is presented, with the injection line modelled through RELAP5. Furthermore, all the complex aspects of the phenomena inside the reaction tank were included: the multiphase system and the interaction between water and PbLi with the chemical reaction and the production of hydrogen were modelled by SIMMER. Preliminary results are presented, showing that the coupling methodology can be effectively employed for the prediction of the chemical and thermal-hydraulic behaviour of complex loop experimental facilities

    CFD analysis of coolant mixing in VVER-1000/V320 reactor pressure vessel

    Get PDF
    This study presents a code-to-code and model-to-model comparison of coolant mixing in the VVER-1000/V320 Kozloduy Unit 6 nuclear power plant using Computational Fluid Dynamics (CFD). Four different CFD codes were used to simulate coolant mixing in the reactor vessel, namely ANSYS Fluent, ANSYS CFX, TrioCFD, and STAR-CCM+. Two different approaches were used to model the upper plenum, while a single simplified model was used for the reactor pressure vessel. The simulations were performed for VVER-1000 coolant transient benchmark (V1000CT-2) mixing exercise. The results were compared between the different CFD codes and models to assess the accuracy and consistency of the simulations with the available experimental data. Overall, the results showed good agreement between the different CFD codes and models, with minor differences observed in some cases. The simplified models were found to be sufficient for predicting the overall coolant mixing patterns observed in the reactor vessel, provided additional insights into the local flow structures and mixing characteristics. This study demonstrates the applicability and reliability of CFD simulations for coolant mixing analysis in VVER-1000/V320 nuclear power plants

    Influence of hyperhomocysteinemia on the cellular redox state - Impact on homocysteine-induced endothelial dysfunction

    Get PDF
    Hyperhomocysteinemia is an independent risk factor for the development of atherosclerosis. An increasing body of evidence has implicated oxidative stress as being contributory to homocysteines deleterious effects on the vasculature. Elevated levels of homocysteine may lead to increased generation of superoxide by a biochemical mechanism involving nitric oxide synthase, and, to a lesser extent, by an increase in the chemical oxidation of homocysteine and other aminothiols in the circulation. The resultant increase in superoxide levels is further amplified by homocysteinedependent alterations in the function of cellular antioxidant enzymes such as cellular glutathione peroxidase or extracellular superoxide dismutase. One direct clinical consequence of elevated vascular superoxide levels is the inactivation of the vasorelaxant messenger nitric oxide, leading to endothelial dysfunction. Scavenging of superoxide anion by either superoxide dismutase or 4,5-dihydroxybenzene 1,3-disulfonate (Tiron) reverses endothelial dysfunction in hyperhomocysteinemic animal models and in isolated aortic rings incubated with homocysteine. Similarly, homocysteineinduced endothelial dysfunction is also reversed by increasing the concentration of the endogenous antioxidant glutathione or overexpressing cellular glutathione peroxidase in animal models of mild hyperhomocysteinemia. Taken together, these findings strongly suggest that the adverse vascular effects of homocysteine are at least partly mediated by oxidative inactivation of nitric oxide
    • …
    corecore