1,932 research outputs found
Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields
Electric polarization loops are measured at room temperature on highly pure
BiFeO3 single crystals synthesized by a flux growth method. Because the
crystals have a high electrical resistivity, the resulting low leakage currents
allow us to measure a large spontaneous polarization reaching 100
microC.cm^{-2}, a value never reported in the bulk. During electric cycling,
the slow degradation of the material leads to an evolution of the hysteresis
curves eventually preventing full saturation of the crystals.Comment: 8 pages, 3 figure
Unconventional high-energy-state contribution to the Cooper pairing in under-doped copper-oxide superconductor HgBaCaCuO
We study the temperature-dependent electronic B1g Raman response of a
slightly under-doped single crystal HgBaCaCuO with a
superconducting critical temperature Tc=122 K. Our main finding is that the
superconducting pair-breaking peak is associated with a dip on its
higher-energy side, disappearing together at Tc. This result hints at an
unconventional pairing mechanism, whereas spectral weight lost in the dip is
transferred to the pair-breaking peak at lower energies. This conclusion is
supported by cellular dynamical mean-field theory on the Hubbard model, which
is able to reproduce all the main features of the B1g Raman response and
explain the peak-dip behavior in terms of a nontrivial relationship between the
superconducting and the pseudo gaps.Comment: 7 pages 4 figure
The nodal gap component as a good candidate for the superconducting order parameter in cuprates
Although more than twenty years have passed since the discovery of high
temperature cuprate superconductivity, the identification of the
superconducting order parameter is still under debate. Here, we show that the
nodal gap component is the best candidate for the superconducting order
parameter. It scales with the critical temperature over a wide doping
range and displays a significant temperature dependence below in both the
underdoped and the overdoped regimes of the phase diagram. In contrast, the
antinodal gap component does not scale with in the underdoped side and
appears to be controlled by the pseudogap amplitude. Our experiments establish
the existence of two distinct gaps in the underdoped cuprates
Impact of the Spin Density Wave Order on the Superconducting Gap of Ba(FeCo)As
We report a doping dependent electronic Raman scattering measurements on
iron-pnictide superconductor Ba(FeCo)As single crystals. A
strongly anisotropic gap is found at optimal doping for x=0.065 with
. Upon entering the coexistence region between
superconducting (SC) and spin-density-wave (SDW) orders, the effective pairing
energy scale is strongly reduced. Our results are interpreted in terms of a
competition between SC and SDW orders for electronic state at the Fermi level.
Our findings advocate for a strong connection between the SC and SDW gaps
anisotropies which are both linked to interband interactions.Comment: 4 pages, 3 figure
Doping dependence of the lattice dynamics in Ba(FeCo)As studied by Raman spectroscopy
We report Raman scattering spectra of iron-pnictide superconductor
Ba(FeCo)As single crystals with varying cobalt content.
Upon cooling through the tetragonal-to-orthorhombic transition, we observe a
large splitting of the E in-plane phonon modes involving Fe and As
displacements. The splitting of the in-plane phonons at the transition is
strongly reduced upon doping and disappears for qualitatively
following the trend displayed by the Fe magnetic moment. The origin of the
splitting is discussed in terms of magnetic frustration inherent to
iron-pnictide systems and we argue that such enhanced splitting may be linked
to strong spin-phonon coupling.Comment: 6 pages, 6 figure
Three energy scales in the superconducting state of hole-doped cuprates detected by electronic Raman scattering
We explored by electronic Raman scattering the superconducting state of
Bi-2212 single crystal by performing a fine tuned doping study. We found three
distinct energy scales in A1g, B1g and B2g symmetries which show three distinct
doping dependencies. Above p=0.22 the three energies merge, below p=0.12, the
A1g scale is no more detectable while the B1g and B2g scales become constant in
energy. In between, the A1g and B1g scales increase monotonically with
under-doping while the B2g one exhibits a maximum at p=0.16. The three
superconducting energy scales appear to be an universal feature of hole-doped
cuprates. We propose that the non trivial doping dependence of the three scales
originates from Fermi surface topology changes and reveals competing orders
inside the superconducting dome.Comment: 6 pages, 5 figure
Angle-resolved photoemission study of the role of nesting and orbital orderings in the antiferromagnetic phase of BaFe2As2
We present a detailed comparison of the electronic structure of BaFe2As2 in
its paramagnetic and antiferromagnetic (AFM) phases, through angle-resolved
photoemission studies. Using different experimental geometries, we resolve the
full elliptic shape of the electron pockets, including parts of dxy symmetry
along its major axis that are usually missing. This allows us to define
precisely how the hole and electron pockets are nested and how the different
orbitals evolve at the transition. We conclude that the imperfect nesting
between hole and electron pockets explains rather well the formation of gaps
and residual metallic droplets in the AFM phase, provided the relative parity
of the different bands is taken into account. Beyond this nesting picture, we
observe shifts and splittings of numerous bands at the transition. We show that
the splittings are surface sensitive and probably not a reliable signature of
the magnetic order. On the other hand, the shifts indicate a significant
redistribution of the orbital occupations at the transition, especially within
the dxz/dyz system, which we discuss
Highly efficient multilayer organic pure-blue-light emitting diodes with substituted carbazoles compounds in the emitting layer
Bright blue organic light-emitting diodes (OLEDs) based on
1,4,5,8,N-pentamethylcarbazole (PMC) and on dimer of N-ethylcarbazole
(N,N'-diethyl-3,3'-bicarbazyl) (DEC) as emitting layers or as dopants in a
4,4'-bis(2,2'-diphenylvinyl)-1,1'-biphenyl (DPVBi) matrix are described. Pure
blue-light with the C.I.E. coordinates x = 0.153 y = 0.100, electroluminescence
efficiency \eta_{EL} of 0.4 cd/A, external quantum efficiency \eta_{ext.} of
0.6% and luminance L of 236 cd/m2 (at 60 mA/cm2) were obtained with PMC as an
emitter and the 2,9-dimethyl-4,7-diphenyl-1,10-phenantroline (BCP) as a
hole-blocking material in five-layer emitting devices. The highest efficiencies
\eta_{EL.} of 4.7 cd/A, and \eta_{ext} = 3.3% were obtained with a four-layer
structure and a DPVBi DEC-doped active layer (CIE coordinates x = 0.158,
y=0.169, \lambda_{peak} = 456 nm). The \eta_{ext.} value is one the highest
reported at this wavelength for blue OLEDs and is related to an internal
quantum efficiency up to 20%
- …
