136 research outputs found

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts

    Pricing reverse mortgages in Spain

    Full text link
    [EN] In Spain, as in other European countries, the continuous ageing of the population creates a need for long-term care services and their financing. However, in Spain the development of this kind of services is still embryonic. The aim of this article is to obtain a calculation method for reverse mortgages in Spain based on the fit and projection of dynamic tables for Spanish mortality, using the Lee and Carter model. Mortality and life expectancy for the next 20 years are predicted using the fitted model, and confidence intervals are obtained from the prediction errors of parameters for the mortality index of the model. The last part of the article illustrates an application of the results to calculate the reverse mortgage model promoted by the Spanish Instituto de Crédito Oficial (Spanish State Financial Agency), for which the authors have developed a computer application.The authors are indebted to Jose Garrido, whose suggestions improved the original manuscript, and to the anonymous referee for his/her valuable comments. This work was partially supported by grants from the MEyC (Ministerio de Educacio´n y Ciencia, Spain), projects MTM2010- 14961 and MTM2008-05152.Debón Aucejo, AM.; Montes, F.; Sala, R. (2013). Pricing reverse mortgages in Spain. European Actuarial Journal. 3:23-43. https://doi.org/10.1007/s13385-013-0071-yS23433Blay-Berrueta D (2007) Sistemas de cofinaciaciación de la dependencia: seguro privado frente a hipoteca inversa. Cuadernos de la Fundación, Fundación Mapfre Estudios, Madrid.Booth H (2006) Demographic forecasting: 1980 to 2005 in review. Int J Forecast 22(3):547–582Booth H, Hyndman R, Tickle L, de Jong P (2006) Lee–Carter mortality forecasting: a multi-country comparison of variants and extensions. Demogr Res 15(9):289–310Booth H, Maindonald J, Smith L (2002) Applying Lee–Carter under conditions of variable mortality decline. Popul Stud 56(3):325–336Booth H, Tickle L (2003) The future aged: new projections of Australia’s ederly population. Popul Stud 22(4):38–44Brouhns N, Denuit M, Keilegom IV (2005) Bootstrapping Poisson log-bilinear model for mortality forecasting. Scand Actuar J 2005(3):212–224Brouhns N, Denuit M, Vermunt J (2002) A Poisson log-bilinear regression approach to the construction of projected lifetables. Insur Math Econ 31(3):373–393Carter L, Lee R (1992) Modeling and forecasting US sex differentials in mortality. Int J Forecast 8(3):393–411Carter L, Prkawetz A (2001) Examining structural shifs in mortality using the Lee–Carter method. Mpidr wp 2001–2007, Center for Demography and Ecology Information, University of Wisconsin-Madison.Chinloy P, Megbolugbe I (1994) Reverse mortgages: contracting and crossover. J Am Real Estate Urban Econ Assoc 22(2):367–386Coale A, Guo G (1989) Revisited regional model life tables at very low levels of mortality. Popul Index 55:613–643Coale A, Kisker E (1990) Defects in data old age mortality in the United States: New procedures for calculating approximately accurate mortality schedules and lifes tables at the highest ages. Asian Pac Popul Forum 4:1–31Cossette H, Delwarde A, Denuit M, Guillot F, Étienne M (2007) Pension plan valuation and mortality projection: a case study with mortality data. N Am Actuar J 11(2):1–34.Costa-Font J (2009) Ageing in place? exploring elderly people’s housing preferences in Spain. Urban Stud 46(2):295–316Costa-Font J (2013) Housing-related well-being in older people: the impact of environmental and financial influences. Urban Stud 50(4):657–673Currie I, Kirkby J, Durban M, Eilers P (2004) Smooth Lee–Carter models and beyond. In: Workshop on Lee–Carter Methods, http://www.ma.hw.ac.uk/~iain/workshop/workshop.html . Accessed 4 Mar 2005Czado C, Delwarde A, Denuit M (2005) Bayesian Poisson log-bilinear mortality projections. Insur Math Econ 36(3):260–284D’Amato V, Haberman S, Piscopo G, Russolillo M (2012) Modelling dependent data for longevity projections. Insur Math Econ 51(3):694–701Davidoff T (2012) Can ‘high costs’ justify weak demand for the home equity conversion mortgage? Technical report, available at SSRNDavidoff T, Welke G (2007) Selection and moral hazard in the reverse mortgage market. Technical report, Haas School of Business, UC BerkeleyDebón A, Montes F, Mateu J, Porcu E, Bevilacqua M (2008) Modelling residuals dependence in dymanic life tables. Comput Stat Data Anal 52(3):3128–3147Debón A, Montes F, Puig F (2008) Modelling and forecasting mortality in Spain. Eur J Oper Res 189(3):624–637Debón A, Montes F, Sala R (2009) Tablas de mortalidad dinámicas. Una aplicación a la hipoteca inversa en España. Fundación ICO. Publicaciones de la Universitat de Valéncia, ValenciaDebón A, Montes F, Martínez-Ruiz F (2011) Statistical methods to compare mortality for a group with non-divergent populations: an application to Spanish regions. Eur Actuar J 1:291–308Delwarde A, Denuit M, Eilers P (2007) Smoothing the Lee–Carter and poisson log-bilinear models for mortality forecasting: a penalized log-likelihood approach. Stat Modell 7(1):29–48Denuit M (2007) Distribution of the random future life expectancies in log-bilinear mortality projections models. Lifetime Data Anal 13(3):381–397Denuit M, Goderniaux A (2004) Closing and projecting lifetables using log-linear models. Mitteilungen. der Schweizerischen Aktuarvereingung 1:29–49Felipe A, Guillén M, Pérez-Marín A (2002) Recent mortality trends in the Spanish population. Br Actuar J 8(4):757–786.Forfar D, McCutcheon J, Wilkie A (1988) On graduation by mathematical formula. J Inst Actuar 115(459):1–149Guillen M, Vidiella-i-Anguera A (2005) Forecasting Spanish natural life expectancy. Risk Anal 25(5):1161–1170Heligman L, Pollard J (1980) The age pattern of mortality. J Inst Actuar 107:49–80Herranz-Gonzalez R (2006) Hipoteca inversa y figuras afines. Informes Portal Mayores 49, IMSERSO, Madrid, http://www.imsersomayores.csic.es/documentos/documentos/herranz-hipoteca-01.pdfHoriuchi S, Wilmoth J (1998) Decelaration in the age pattern of mortality at older ages. Demography 35:391–412Hyndman RJ (2008) Forecast: forecasting functions for time series. R package version 1.11Koissi M, Shapiro A, Hgns G (2006) Evaluating and extending the Lee–Carter model for mortality forecasting confidence interval. Insur Math Econ 38(1):1–20Kutty N (1998) The scope for poverty alleviation among elderly home-owners in the United States through reverse mortgages. Urban Stud 35(1):113–129Lee R (2000) The Lee–Carter method for forecasting mortality, with various extensions and applications. N Am Actuar J 4(1):80–91Lee R, Carter L (1992) Modelling and forecasting US mortality. J Am Stat Assoc 87(419):659–671Lee R, Nault F (1993) Modeling and forecasting provincial mortality in Canada. Montreal world congress of the International Union for Scientific Study of PopulationLee R, Rofman R (1994) Modelación y Proyección de la mortalidad en Chile. Notas Poblacin 22(59):182–213Li N, Lee R (2005) Coherent mortality forecast for a group of populations: an extension of the Lee–Carter method. Demography 42(3):575–593Li S-H, Hardy M, Tan K (2009) Uncertainty in mortality forecasting: an extensin to the classical Lee–Carter approach. Astin Bull 31:137–164Lindbergson M (2001) Mortality among the elderly in Sweden. Scan Actuar J 1:79–94Liu X, Braun WJ (2010) Investigating mortality uncertainty using the block bootstrap. J Probab Stat 2010:385–399McNown R, Rogers A (1989) Forecasting mortality: a parametrized time series aproach. Demography 26(4):645–660McNown R, Rogers A (1992) Forecasting cause-specific mortality using time series methods. Int J Forecast 8(3):413–432Miceli T, Sirmans C (1994) Reverse mortgages and borrower maintenance risk. J Am Real Estate Urban Econ Assoc 22(2):433–450Pedroza C (2006) A bayesian forecasting model: predicting US male mortality. Biostatistics 7(4):530–550Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting: a parallel generalized linear modelling aproach for England and Wales mortality projections. J R Stat Soc C 52(1):119–137Renshaw A, Haberman S (2003) Lee–Carter mortality forecasting with age specific enhancement. Insur Math Econ 33(2):255–272Renshaw A, Haberman S (2003) On the forecasting of mortality reduction factors. Insur Math Econ 32(3):379–401Renshaw A, Haberman S (2006) A cohort-based extension to the Lee–Carter model for mortality reduction factors. Insur Math Econ 38(3):556–570Renshaw A, Haberman S (2008) On simulation-based approaches to risk measurement in mortality with specific reference to poisson Lee–Carter modelling. Insur Math Econ 42(2):797–816Shiller R, Weiss A (2000) Moral hazard in home equity conversion. Real Estate Econ 28(1):1–31Skarr D (2008) Financial planner’s guide to the FHA insured home equity conversion mortgage. J Financ Plan 21(5):68–75Sánchez-Álvarez I, Lpez-Ares S, Quiroga-García R (2007) Diseño de hipotecas inversas en el mercado español. Proyecto 205/05 3, Instituto de Mayores y Servicios SocialesTaffin C (2006) La hipoteca inversa o vitalicia. Informes externos, Asociación Hipotecaria EspañolaThatcher A, Kannisto V, Andreev K (2002) The survivor ratio method for estimating numbers at high ages. Demogr Res 6(1):1–18Thatcher A, Kannisto V, Vaupel J (1998) The force of mortality at ages 80 to 120. Odense University Press, OdenseTuljapurkar S, Li N, Boe C (2000) A universal pattern of mortality decline in the G7 countries. Nature 405(6788):789–792Wang L, Valdez E, Piggott J (2008) Securization of longevity risk in reverse mortgages. N Am Actuar J 12(4):345–370Wilmoth J (1993) Computational methods for fitting and extrapolating the Lee–Carter model of mortality change. Technical report, Departament of Demography, University of California, BerkeleyWilmoth J (1996) Health and mortality among elderly populations, chapter mortality projections for Japan: a comparison of four methods. Oxford University Press, Oxford, pp 266–28

    Discrimination between two different grades of human glioma based on blood vessel infrared spectral imaging

    Get PDF
    Gliomas are brain tumours classified into four grades with increasing malignancy from I to IV. The development and the progression of malignant glioma largely depend on the tumour vascularization. Due to their tissue heterogeneity, glioma cases can be difficult to classify into a specific grade using the gold standard of histological observation, hence the need to base classification on a quantitative and reliable analytical method for accurately grading the disease. Previous works focused specifically on vascularization study by Fourier transform infrared (FTIR) spectroscopy, proving this method to be a way forward to detect biochemical changes in the tumour tissue not detectable by visual techniques. In this project, we employed FTIR imaging using a focal plane array (FPA) detector and globar source to analyse large areas of glioma tumour tissue sections via molecular fingerprinting in view of helping to define markers of the tumour grade. Unsupervised multivariate analysis (hierarchical cluster analysis and principal component analysis) of blood vessel spectral data, retrieved from the FPA images, revealed the fine structure of the borderline between two areas identified by a pathologist as grades III and IV. Spectroscopic indicators are found capable of discriminating different areas in the tumour tissue and are proposed as biomolecular markers for potential future use of grading gliomas. Graphical Abstract Infrared imaging of glioma blood vessels provides a means to revise the pathologists' line of demarcation separating grade III (GIII) from grade IV (GIV) parts
    corecore