22 research outputs found

    Molecular diversity and high virulence of Legionella pneumophila strains isolated from biofilms developed within a warm spring of a thermal spa.

    Get PDF
    International audienceABSTRACT: BACKGROUND: Several cases of legionellosis have been diagnosed in the same French thermal spa in 1986, 1994 and 1997. L. pneumophila serogroup 1 (Lp1) strains have been isolated from several patients, but the source of contamination was not identified despite the presence of different Lp1 in water samples of the three natural springs feeding the spa at this period. RESULTS: Our strategy was to investigate L. pneumophila (Lp) strains from natural biofilms developed in a sulphur-rich warm spring of this contaminated site. Biofilm analysis revealed the presence of three Lp serogroups (Lp1, Lp10 and Lp12). Surprisingly, Lp10 and Lp12 were not reported in the previous described studies from water samples. Besides, the new seven Lp1 we isolated exhibit a high molecular diversity and have been differentiated in five classes according to their DNA genome patterns obtained by PFGE and mip sequences. It must be noted that these DNA patterns are original and unknown in databases. Interestingly, the 27 Lp environmental strains we isolated display a higher cytotoxicity and virulence towards the amoeba Acanthamoeba castellanii than those of known Lp1 epidemic strains. CONCLUSION: The characteristics of Legionella pneumophila Lp1 strains isolated from the warm spring are in agreement with their presence in biofilms and their probable long-term persistence in this ecosystem

    Clinical and Environmental Isolates of Legionella pneumophila Serogroup 1 Cannot Be Distinguished by Sequence Analysis of Two Surface Protein Genes and Three Housekeeping Genes

    No full text
    We used gene sequencing to determine whether clinical (sporadic, epidemic, and endemic) and environmental isolates of Legionella pneumophila serogroup (sg) 1 belong to specific lineages. A total of 178 clinical and environmental L. pneumophila sg 1 isolates, defined by pulsed-field gel electrophoresis and epidemiological data as sporadic, epidemic, or endemic, were analyzed for polymorphisms in five gene fragments. The fragments belonged to three housekeeping genes (coding for aconitase [acn], aspartate-ÎČ-semialdehyde dehydrogenase [asd], and RNA polymerase ÎČ subunit [rpoB]) and two surface protein genes (coding for the macrophage infectivity potentiator [mip] and the major outer membrane protein [mompS]). The phylogenetic tree inferred from sequence polymorphisms of the five genes identified two large clusters, one consisting of 133 poorly differentiated strains and containing two smaller clusters (10 and 2 strains) unrelated to each other and the other consisting of 42 strains. Clinical and environmental isolates could not be distinguished on this basis, and no link between genetic background and epidemiological type was found, suggesting that other factors are responsible for differences in pathogenicity

    Relationships between Staphylococcus aureus Genetic Background, Virulence Factors, agr Groups (Alleles), and Human Disease

    No full text
    The expression of most Staphylococcus aureus virulence factors is controlled by the agr locus, which encodes a two-component signaling pathway whose activating ligand is an agr-encoded autoinducing peptide (AIP). A polymorphism in the amino acid sequence of the AIP and of its corresponding receptor divides S. aureus strains into four major groups. Within a given group, each strain produces a peptide that can activate the agr response in the other member strains, whereas the AIPs belonging to different groups are usually mutually inhibitory. We investigated a possible relationship between agr groups and human S. aureus disease by studying 198 S. aureus strains isolated from 14 asymptomatic carriers, 66 patients with suppurative infection, and 114 patients with acute toxemia. The agr group and the distribution of 24 toxin genes were analyzed by PCR, and the genetic background was determined by means of amplified fragment length polymorphism (AFLP) analysis. The isolates were relatively evenly distributed among the four agrgroups, with 61 strains belonging to agr group I, 49 belonging to group II, 43 belonging to group III, and 45 belonging to group IV. Principal coordinate analysis performed on the AFLP distance matrix divided the 198 strains into three main phylogenetic groups, AF1 corresponding to strains of agr group IV, AF2 corresponding to strains of agr groups I and II, and AF3 corresponding to strains of agr group III. This indicated that the agr type was linked to the genetic background. A relationship between genetic background, agr group, and disease type was observed for several toxin-mediated diseases: for instance, agr group IV strains were associated with generalized exfoliative syndromes, and phylogenetic group AF1 strains with bullous impetigo. Among the suppurative infections, endocarditis strains mainly belonged to phylogenetic group AF2 and agr groups I and II. While these results do not show a direct role of the agr type in the type of human disease caused by S. aureus, the agr group may reflect an ancient evolutionary division of S. aureus in terms of this species’ fundamental biology

    Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila

    No full text
    International audienceMonitoring the emergence of antibiotic resistance is a recent issue in the treatment of Legionnaires' disease. Macrolides are recommended as first-line therapy, but resistance mechanisms have not been studied in Legionella species. Our aim was to determine the molecular basis of macrolide resistance in L. pneumophila Twelve independent lineages from a common susceptible L. pneumophila ancestral strain were propagated under conditions of erythromycin or azithromycin pressure to produce high-level macrolide resistance. Whole-genome sequencing was performed on 12 selected clones, and we investigated mutations common to all lineages. We reconstructed the dynamics of mutation for each lineage and demonstrated their involvement in decreased susceptibility to macrolides. The resistant mutants were produced in a limited number of passages to obtain a 4,096-fold increase in erythromycin MICs. Mutations affected highly conserved 5-amino-acid regions of L4 and L22 ribosomal proteins and of domain V of 23S rRNA (G2057, A2058, A2059, and C2611 nucleotides). The early mechanisms mainly affected L4 and L22 proteins and induced a 32-fold increase in the MICs of the selector drug. Additional mutations related to 23S rRNA mostly occurred later and were responsible for a major increase of macrolide MICs, depending on the mutated nucleotide, the substitution, and the number of mutated genes among the three rrl copies. The major mechanisms of the decreased susceptibility to macrolides in L. pneumophila and their dynamics were determined. The results showed that macrolide resistance could be easily selected in L. pneumophila and warrant further investigations in both clinical and environmental settings
    corecore