183 research outputs found

    The ERDA/LeRC photovoltaic systems test facility

    Get PDF
    A test facility was designed, and built to provide a place where photovoltaic systems may be assembled and electrically configured, to evaluate system performance and characteristics. The facility consists of a solar cell array of an initial 10-kW peak power rating, test hardware for several alternate methods of power conditioning, a variety of loads, an electrical energy storage system, and an instrumentation and data acquisition system

    Method of making encapsulated solar cell modules

    Get PDF
    Electrical connections to solar cells in a module are made at the same time the cells are encapsulated for protection. The encapsulating material is embossed to facilitate the positioning of the cells during assembly

    Terrestrial applications of FEP-encapsulated solar cell modules

    Get PDF
    FEP-encapsulated solar cell modules and arrays have been designed and built expressly for terrestrial applications. System design including solar cell array mechanical design and the approach to system sizing is outlined. Such solar cell systems have been installed at six sites. Individual modules have undergone marine environment tests. Results from seven months of operation indicate that system is meeting its electrical design requirements. No mechanical degradation has been reported. The array on Mammoth Mountain, California has been damaged by rime ice but shows no loss in electrical output. Marine environment tests on single modules have shown that elements of the module must be completely sealed by the FEP. Based on the limited test data available, the FEP-encapsulated solar cell module appears well suited to terrestrial applications

    Status of FEP encapsulated solar cell modules used in terrestrial applications

    Get PDF
    The Lewis Research Center has been engaged in transferring the FEP encapsulated solar cell technology developed for the space program to terrestrial applications. FEP encapsulated solar cell modules and arrays were designed and built expressly for terrestrial applications. Solar cell power systems were installed at three different land sites, while individual modules are undergoing marine environment tests. Four additional power systems are being completed for installation during the summer of 1974. These tests have revealed some minor problems which have been corrected. The results confirm the inherent utility of FEP encapsulated terrestrial solar cell systems

    Preliminary results of accelerated exposure testing of solar cell system components

    Get PDF
    Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance

    Real time outdoor exposure testing of solar cell modules and component materials

    Get PDF
    Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants

    Solar cell shingle

    Get PDF
    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected

    Solar power roof shingle

    Get PDF
    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant

    DOE LeRC photovoltaic systems test facility

    Get PDF
    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility

    On the resolution and image intensity of the field-ion microscope

    Get PDF
    High resolution and image intensity of field ion microscope at low temperature
    corecore