3,379 research outputs found

    Interface familiarity restores active advantage in a virtual exploration and reconstruction task in children.

    Get PDF
    Active exploration is reportedly better than passive observation of spatial displacements in real environments, for the acquisition of relational spatial information, especially by children. However, a previous study using a virtual environment (VE) showed that children in a passive observation condition performed better than actives when asked to reconstruct in reality the environment explored virtually. Active children were unpractised in using the input device, which may have detracted from any active advantage, since input device operation may be regarded as a concurrent task, increasing cognitive load and spatial working memory demands. To examine this possibility, 7-8-year-old children in the present study were given 5 minutes of training with the joystick input device. When compared with passive participants for spatial learning, active participants gave a better performance than passives, placing objects significantly more accurately. The importance of interface training when using VEs for assessment and training was discussed

    Harmonic Tidal Analysis of Long Time Series

    Get PDF
    A harmonic tided analysis program is developed for observational records of 18.61 years or longer. The amplitudes and phases of over five hundred astronomical and shallow water constituents are calculated using a least squares approach. The program is tested with 38 years of hourly observations at Victoria and the amplitudes and phases of satellite constituents whose amplitudes lie above the background noise level are generally found to be consistent with potential theory. Predictions based on the results of a 19-year analysis are found to be only slightly better than those based on averages from 19 one-year analyses, thereby confirming the accuracy of G odin’s [1972] satellite correction algorithm and satellite inference based on potential theory relationships. However it is demonstrated with constituents NO1, J1, N2, and L2, that results from the 38-year analysis can be used to improve the satellite inference calculations in shorter analyses. Based on the stability of the 38 one-year analyses, recommendations are also made for the inclusion of additional constituents in the standard prediction of tides at Victoria

    A Search for New Physics with the BEACON Mission

    Full text link
    The primary objective of the Beyond Einstein Advanced Coherent Optical Network (BEACON) mission is a search for new physics beyond general relativity by measuring the curvature of relativistic space-time around Earth. This curvature is characterized by the Eddington parameter \gamma -- the most fundamental relativistic gravity parameter and a direct measure for the presence of new physical interactions. BEACON will achieve an accuracy of 1 x 10^{-9} in measuring the parameter \gamma, thereby going a factor of 30,000 beyond the present best result involving the Cassini spacecraft. Secondary mission objectives include: (i) a direct measurement of the "frame-dragging" and geodetic precessions in the Earth's rotational gravitomagnetic field, to 0.05% and 0.03% accuracy correspondingly, (ii) first measurement of gravity's non-linear effects on light and corresponding 2nd order spatial metric's effects to 0.01% accuracy. BEACON will lead to robust advances in tests of fundamental physics -- this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in physics. BEACON will provide crucial information to separate modern scalar-tensor theories of gravity from general relativity, probe possible ways for gravity quantization, and test modern theories of cosmological evolution.Comment: 8 pages, 2 figures, 2 table

    Tidal energy in the Bering Sea

    Get PDF
    Tidal harmonics computed from TOPEX/POSEIDON altimetry are assimilated into a barotropic, finite element model of the Bering Sea whose accuracy is evaluated though comparisons with independent bottom pressure gauges. The model is used to estimate energy fluxes through each of the Aleutian Passes and Bering Strait and to construct an energy budget for the major tidal constituents. The finite element model does not conserve mass locally and this is shown to give rise to an additional term in the energy budget whose contribution is significant for the prior model, but which is reduced substantially with the assimilation technique. Though the M2 constituent is estimated to have the largest net energy flux into the Bering Sea at 31.2 GW, the K1 constituent is not far behind at 24.9 GW and the sum for the three largest diurnal constituents is found to be greater than the sum for the largest three semi-diurnals. Samalga and Amutka Passes are found to be the primary conduits for influx of semi-diurnal energy while Amchitka Pass is the primary conduit for diurnal energy. A significant portion of the diurnal energy is seen to exist in the form of continental shelf waves trapped along Bering Sea slopes.The effect of the 18.6-year nodal modulation is estimated and found to cause basin-wide variations of approximately 19% in the net incoming tidal energy flux. Larger variations in the dissipation occur in subregions that are strongly dominated by the diurnal constituents, such as Seguam Pass and south of Cape Navarin. These variations should correlate with tidal mixing and may have important consequences for biological productivity, similar to those previously found for Pacific halibut recruitment (Parker et al., 1995) and shrimp, capelin, herring, cod, and haddock biomass in the Barents Sea (Yndestad, 2004)

    First-principles envelope-function theory for lattice-matched semiconductor heterostructures

    Full text link
    In this paper a multi-band envelope-function Hamiltonian for lattice-matched semiconductor heterostructures is derived from first-principles norm-conserving pseudopotentials. The theory is applicable to isovalent or heterovalent heterostructures with macroscopically neutral interfaces and no spontaneous bulk polarization. The key assumption -- proved in earlier numerical studies -- is that the heterostructure can be treated as a weak perturbation with respect to some periodic reference crystal, with the nonlinear response small in comparison to the linear response. Quadratic response theory is then used in conjunction with k.p perturbation theory to develop a multi-band effective-mass Hamiltonian (for slowly varying envelope functions) in which all interface band-mixing effects are determined by the linear response. To within terms of the same order as the position dependence of the effective mass, the quadratic response contributes only a bulk band offset term and an interface dipole term, both of which are diagonal in the effective-mass Hamiltonian. Long-range multipole Coulomb fields arise in quantum wires or dots, but have no qualitative effect in two-dimensional systems beyond a dipole contribution to the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio

    Choosing a basis that eliminates spurious solutions in k.p theory

    Full text link
    A small change of basis in k.p theory yields a Kane-like Hamiltonian for the conduction and valence bands of narrow-gap semiconductors that has no spurious solutions, yet provides an accurate fit to all effective masses. The theory is shown to work in superlattices by direct comparison with first-principles density-functional calculations of the valence subband structure. A reinterpretation of the standard data-fitting procedures used in k.p theory is also proposed.Comment: 15 pages, 2 figures; v3: expanded with much new materia

    Accurate quadratic-response approximation for the self-consistent pseudopotential of semiconductor nanostructures

    Full text link
    Quadratic-response theory is shown to provide a conceptually simple but accurate approximation for the self-consistent one-electron potential of semiconductor nanostructures. Numerical examples are presented for GaAs/AlAs and InGaAs/InP (001) superlattices using the local-density approximation to density-functional theory and norm-conserving pseudopotentials without spin-orbit coupling. When the reference crystal is chosen to be the virtual-crystal average of the two bulk constituents, the absolute error in the quadratic-response potential for Gamma(15) valence electrons is about 2 meV for GaAs/AlAs and 5 meV for InGaAs/InP. Low-order multipole expansions of the electron density and potential response are shown to be accurate throughout a small neighborhood of each reciprocal lattice vector, thus providing a further simplification that is confirmed to be valid for slowly varying envelope functions. Although the linear response is about an order of magnitude larger than the quadratic response, the quadratic terms are important both quantitatively (if an accuracy of better than a few tens of meV is desired) and qualitatively (due to their different symmetry and long-range dipole effects).Comment: 16 pages, 20 figures; v2: new section on limitations of theor

    Band structure of semimagnetic Hg1-yMnyTe quantum wells

    Full text link
    The band structure of semimagnetic Hg_1-yMn_yTe/Hg_1-xCd_xTe type-III quantum wells has been calculated using eight-band kp model in an envelope function approach. Details of the band structure calculations are given for the Mn free case (y=0). A mean field approach is used to take the influence of the sp-d exchange interaction on the band structure of QW's with low Mn concentrations into account. The calculated Landau level fan diagram and the density of states of a Hg_0.98Mn_0.02Te/Hg_0.3Cd_0.7Te QW are in good agreement with recent experimental transport observations. The model can be used to interpret the mutual influence of the two-dimensional confinement and the sp-d exchange interaction on the transport properties of Hg_1-yMn_yTe/Hg_1-xCd_xTe QW's.Comment: 12 pages, 4 figure

    Auger Recombination in Semiconductor Quantum Wells

    Full text link
    The principal mechanisms of Auger recombination of nonequilibrium carriers in semiconductor heterostructures with quantum wells are investigated. It is shown for the first time that there exist three fundamentally different Auger recombination mechanisms of (i) thresholdless, (ii) quasi-threshold, and (iii) threshold types. The rate of the thresholdless Auger process depends on temperature only slightly. The rate of the quasi-threshold Auger process depends on temperature exponentially. However, its threshold energy essentially varies with quantum well width and is close to zero for narrow quantum wells. It is shown that the thresholdless and the quasi-threshold Auger processes dominate in narrow quantum wells, while the threshold and the quasi-threshold processes prevail in wide quantum wells. The limiting case of a three-dimensional (3D)Auger process is reached for infinitely wide quantum wells. The critical quantum well width is found at which the quasi-threshold and threshold Auger processes merge into a single 3D Auger process. Also studied is phonon-assisted Auger recombination in quantum wells. It is shown that for narrow quantum wells the act of phonon emission becomes resonant, which in turn increases substantially the coefficient of phonon-assisted Auger recombination. Conditions are found under which the direct Auger process dominates over the phonon-assisted Auger recombination at various temperatures and quantum well widths.Comment: 38 pages, 7 figure
    • …
    corecore