28,797 research outputs found
Quantum Field Theory Constrains Traversable Wormhole Geometries
Recently a bound on negative energy densities in four-dimensional Minkowski
spacetime was derived for a minimally coupled, quantized, massless, scalar
field in an arbitrary quantum state. The bound has the form of an uncertainty
principle-type constraint on the magnitude and duration of the negative energy
density seen by a timelike geodesic observer. When spacetime is curved and/or
has boundaries, we argue that the bound should hold in regions small compared
to the minimum local characteristic radius of curvature or the distance to any
boundaries, since spacetime can be considered approximately Minkowski on these
scales. We apply the bound to the stress-energy of static traversable wormhole
spacetimes. Our analysis implies that either the wormhole must be only a little
larger than Planck size or that there is a large discrepancy in the length
scales which characterize the wormhole. In the latter case, the negative energy
must typically be concentrated in a thin band many orders of magnitude smaller
than the throat size. These results would seem to make the existence of
macroscopic traversable wormholes very improbable.Comment: 26 pages, plain LaTe
Quantum Inequalities on the Energy Density in Static Robertson-Walker Spacetimes
Quantum inequality restrictions on the stress-energy tensor for negative
energy are developed for three and four-dimensional static spacetimes. We
derive a general inequality in terms of a sum of mode functions which
constrains the magnitude and duration of negative energy seen by an observer at
rest in a static spacetime. This inequality is evaluated explicitly for a
minimally coupled scalar field in three and four-dimensional static
Robertson-Walker universes. In the limit of vanishing curvature, the flat
spacetime inequalities are recovered. More generally, these inequalities
contain the effects of spacetime curvature. In the limit of short sampling
times, they take the flat space form plus subdominant curvature-dependent
corrections.Comment: 18 pages, plain LATEX, with 3 figures, uses eps
Are routinely collected NHS administrative records suitable for endpoint identification in clinical trials? Evidence from the West of Scotland coronary prevention study
Background: Routinely collected electronic patient records are already widely used in epidemiological research. In this work we investigated the potential for using them to identify endpoints in clinical trials.<p></p>
Methods: The events recorded in the West of Scotland Coronary Prevention Study (WOSCOPS), a large clinical trial of pravastatin in middle-aged hypercholesterolaemic men in the 1990s, were compared with those in the record-linked deaths and hospitalisations records routinely collected in Scotland.<p></p>
Results: We matched 99% of fatal study events by date. We showed excellent matching (97%) of the causes of fatal
endpoint events and good matching (.80% for first events) of the causes of nonfatal endpoint events with a slightly lower
rate of mismatching of record linkage than study events (19% of first study myocardial infarctions (MI) and 4% of first record linkage MIs not matched as MI). We also investigated the matching of non-endpoint events and showed a good level of matching, with .78% of first stroke/TIA events being matched as stroke/TIA. The primary reasons for mismatches were record linkage data recording readmissions for procedures or previous events, differences between the diagnoses in the routinely collected data and the conclusions of the clinical trial expert adjudication committee, events occurring outside Scotland and therefore being missed by record linkage data, miscoding of cardiac events in hospitalisations data as ‘unspecified chest pain’, some general miscoding in the record linkage data and some record linkage errors.<p></p>
Conclusions: We conclude that routinely collected data could be used for recording cardiovascular endpoints in clinical
trials and would give very similar results to rigorously collected clinical trial data, in countries with unified health systems such as Scotland. The endpoint types would need to be carefully thought through and an expert endpoint adjudication committee should be involved.<p></p>
Stochastic Spacetime and Brownian Motion of Test Particles
The operational meaning of spacetime fluctuations is discussed. Classical
spacetime geometry can be viewed as encoding the relations between the motions
of test particles in the geometry. By analogy, quantum fluctuations of
spacetime geometry can be interpreted in terms of the fluctuations of these
motions. Thus one can give meaning to spacetime fluctuations in terms of
observables which describe the Brownian motion of test particles. We will first
discuss some electromagnetic analogies, where quantum fluctuations of the
electromagnetic field induce Brownian motion of test particles. We next discuss
several explicit examples of Brownian motion caused by a fluctuating
gravitational field. These examples include lightcone fluctuations, variations
in the flight times of photons through the fluctuating geometry, and
fluctuations in the expansion parameter given by a Langevin version of the
Raychaudhuri equation. The fluctuations in this parameter lead to variations in
the luminosity of sources. Other phenomena which can be linked to spacetime
fluctuations are spectral line broadening and angular blurring of distant
sources.Comment: 15 pages, 3 figures. Talk given at the 9th Peyresq workshop, June
200
Quantum Inequalities and Singular Energy Densities
There has been much recent work on quantum inequalities to constrain negative
energy. These are uncertainty principle-type restrictions on the magnitude and
duration of negative energy densities or fluxes. We consider several examples
of apparent failures of the quantum inequalities, which involve passage of an
observer through regions where the negative energy density becomes singular. We
argue that this type of situation requires one to formulate quantum
inequalities using sampling functions with compact support. We discuss such
inequalities, and argue that they remain valid even in the presence of singular
energy densities.Comment: 18 pages, LaTex, 2 figures, uses eps
Ab initio Molecular Orbital Studies of the Vibrational Spectra of some van der Waals Complexes. Part 4. Complexes of Sulphur Dioxide with Carbon Dioxide, Carbonyl Sulphide, Carbon Disulphide and Nitrous Oxide
The binary complexes formed between sulphur dioxide, as electron donor, and the series carbon dioxide, carbonyl sulphide and carbon disulphide, as electron acceptors, have been studied by means of ab initio molecular orbital theory. The optimized structures, the interaction energies and the vibrational spectra have been determined, and the effect of successive substitution of sulphur for oxygen atoms in the electron acceptor molecules has been established. Nitrous oxide, which is isoelectronic with carbon dioxide, has also been included among the electron acceptors, but the properties of the complex formed between sulphur dioxide and nitrous oxide are substantially different from those of the other three complexes.Keywords: Ab initio calculations, molecular complexes, sulphur dioxide, carbon dioxide, carbonyl sulphide, carbon disulphide, nitrous oxide, molecular structures, interaction energies, vibrational spectraPDF and Supplementry file attache
- …