Abstract

The operational meaning of spacetime fluctuations is discussed. Classical spacetime geometry can be viewed as encoding the relations between the motions of test particles in the geometry. By analogy, quantum fluctuations of spacetime geometry can be interpreted in terms of the fluctuations of these motions. Thus one can give meaning to spacetime fluctuations in terms of observables which describe the Brownian motion of test particles. We will first discuss some electromagnetic analogies, where quantum fluctuations of the electromagnetic field induce Brownian motion of test particles. We next discuss several explicit examples of Brownian motion caused by a fluctuating gravitational field. These examples include lightcone fluctuations, variations in the flight times of photons through the fluctuating geometry, and fluctuations in the expansion parameter given by a Langevin version of the Raychaudhuri equation. The fluctuations in this parameter lead to variations in the luminosity of sources. Other phenomena which can be linked to spacetime fluctuations are spectral line broadening and angular blurring of distant sources.Comment: 15 pages, 3 figures. Talk given at the 9th Peyresq workshop, June 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019