19,590 research outputs found
Do Aid Agencies Have an Ethical Duty to Comply with Researchers? A Response to Rennie.
Medical AID organisations such as Médecins Sans Frontières receive several requests from individuals and international academic institutions to conduct research at their implementation sites in Africa. Do AID agencies have an ethical duty to comply with research requests? In this paper we respond to the views and constructed theories (albeit unfounded) of one such researcher, whose request to conduct research at one of our sites in the Democratic Republic of Congo was turned down
Neutrinoless Double Beta Decay with SNO+
SNO+ will search for neutrinoless double beta decay by loading 780 tonnes of
linear alkylbenzene liquid scintillator with O(tonne) of neodymium. Using
natural Nd at 0.1% loading will provide 43.7 kg of 150Nd given its 5.6%
abundance and allow the experiment to reach a sensitivity to the effective
neutrino mass of 100-200 meV at 90% C.L in a 3 year run. The SNO+ detector has
ultra low backgrounds with 7000 tonnes of water shielding and self-shielding of
the scintillator. Distillation and several other purification techniques will
be used with the aim of achieving Borexino levels of backgrounds. The
experiment is fully funded and data taking with light-water will commence in
2012 with scintillator data following in 2013.Comment: 4 pages, 2 figures, prepared for TAUP 201
Exact solution of the Hu-Paz-Zhang master equation
The Hu-Paz-Zhang equation is a master equation for an oscillator coupled to a
linear passive bath. It is exact within the assumption that the oscillator and
bath are initially uncoupled . Here an exact general solution is obtained in
the form of an expression for the Wigner function at time t in terms of the
initial Wigner function. The result is applied to the motion of a Gaussian wave
packet and to that of a pair of such wave packets. A serious divergence arising
from the assumption of an initially uncoupled state is found to be due to the
zero-point oscillations of the bath and not removed in a cutoff model. As a
consequence, worthwhile results for the equation can only be obtained in the
high temperature limit, where zero-point oscillations are neglected. In that
limit closed form expressions for wave packet spreading and attenuation of
coherence are obtained. These results agree within a numerical factor with
those appearing in the literature, which apply for the case of a particle at
zero temperature that is suddenly coupled to a bath at high temperature. On the
other hand very different results are obtained for the physically consistent
case in which the initial particle temperature is arranged to coincide with
that of the bath
Does the Third Law of Thermodynamics hold in the Quantum Regime?
The first in a long series of papers by John T. Lewis,
G. W. Ford and the present author, considered the problem of the most general
coupling of a quantum particle to a linear passive heat bath, in the course of
which they derived an exact formula for the free energy of an oscillator
coupled to a heat bath in thermal equilibrium at temperature T. This formula,
and its later extension to three dimensions to incorporate a magnetic field,
has proved to be invaluable in analyzing problems in quantum thermodynamics.
Here, we address the question raised in our title viz. Nernst's third law of
thermodynamics
Development of shape memory metal as the actuator of a fail safe mechanism
A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described
Recommended from our members
Dynamics of Dinitrosyl Iron Complex (DNIC) Formation with Low Molecular Weight Thiols.
Dinitrosyl iron complexes (DNICs) are ubiquitous in mammalian cells and tissues producing nitric oxide (NO) and have been argued to play key physiological and pathological roles. Nonetheless, the mechanism and dynamics of DNIC formation in aqueous media remain only partially understood. Here, we report a stopped-flow kinetics and density functional theory (DFT) investigation of the reaction of NO with ferrous ions and the low molecular weight thiols glutathione (GSH) and cysteine (CysSH) as well as the peptides WCGPC and WCGPY to produce DNICs in pH 7.4 aqueous media. With each thiol, a two-stage reaction pattern is observed. The first stage involves several rapidly established pre-equilibria leading to a ferrous intermediate concluded to have the composition FeII(NO)(RS)2(H2O)x (C). In the second stage, C undergoes rate-limiting, unimolecular autoreduction to give thiyl radical (RS•) plus the mononitrosyl Fe(I) complex FeI(NO)(RS)(H2O)x following the reactivity order of CysSH > WCGPC > WCGPY > GSH. Time course simulations using the experimentally determined kinetics parameters demonstrate that, at a NO flux characteristic of inflammation, DNICs will be rapidly formed from intracellular levels of ferrous iron and thiols. Furthermore, the proposed mechanism offers a novel pathway for S-nitroso thiol (RSNO) formation in a biological environment
Gravitons and Lightcone Fluctuations II: Correlation Functions
A model of a fluctuating lightcone due to a bath of gravitons is further
investigated. The flight times of photons between a source and a detector may
be either longer or shorter than the light propagation time in the background
classical spacetime, and will form a Gaussian distribution centered around the
classical flight time. However, a pair of photons emitted in rapid succession
will tend to have correlated flight times. We derive and discuss a correlation
function which describes this effect. This enables us to understand more fully
the operational significance of a fluctuating lightcone. Our results may be
combined with observational data on pulsar timing to place some constraints on
the quantum state of cosmological gravitons.Comment: 16 pages and two figures, uses eps
Brownian Motion in Robertson-Walker Space-Times from electromagnetic Vacuum Fluctuations
We consider classical particles coupled to the quantized electromagnetic
field in the background of a spatially flat Robertson-Walker universe. We find
that these particles typically undergo Brownian motion and acquire a non-zero
mean squared velocity which depends upon the scale factor of the universe. This
Brownian motion can be interpreted as due to non-cancellation of
anti-correlated vacuum fluctuations in the time dependent background
space-time. We consider several types of coupling to the electromagnetic field,
including particles with net electric charge, a magnetic dipole moment, and
electric polarizability. We also investigate several different model scale
factors.Comment: 29 pages, 7 figure
Quantum measurement and decoherence
Distribution functions defined in accord with the quantum theory of
measurement are combined with results obtained from the quantum Langevin
equation to discuss decoherence in quantum Brownian motion. Closed form
expressions for wave packet spreading and the attenuation of coherence of a
pair of wave packets are obtained. The results are exact within the context of
linear passive dissipation. It is shown that, contrary to widely accepted
current belief, decoherence can occur at high temperature in the absence of
dissipation. Expressions for the decoherence time with and without dissipation
are obtained that differ from those appearing in earlier discussions
Quantum inequalities in two dimensional curved spacetimes
We generalize a result of Vollick constraining the possible behaviors of the
renormalized expected stress-energy tensor of a free massless scalar field in
two dimensional spacetimes that are globally conformal to Minkowski spacetime.
Vollick derived a lower bound for the energy density measured by a static
observer in a static spacetime, averaged with respect to the observers proper
time by integrating against a smearing function. Here we extend the result to
arbitrary curves in non-static spacetimes. The proof, like Vollick's proof, is
based on conformal transformations and the use of our earlier optimal bound in
flat Minkowski spacetime. The existence of such a quantum inequality was
previously established by Fewster.Comment: revtex 4, 5 pages, no figures, submitted to Phys. Rev. D. Minor
correction
- …